K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) \(A=x^2-6x+11\)

\(\Rightarrow A=x^2-6x+9+2\)

\(\Rightarrow A=\left(x-3\right)^2+2\)

Ta có: \(\left(x-3\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-3\right)^2+2\ge2\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\) x = 3

Vậy \(MIN\) \(A=2\Leftrightarrow x=3\)

b) \(B=2x^2+10x-1\)

\(\Rightarrow B=2\left(x^2+5\right)-1\)

\(\Rightarrow B=2\left(x^2+2\cdot\dfrac{5}{2}\cdot x+\dfrac{25}{4}\right)-\dfrac{25}{2}-1\)

\(\Rightarrow B=2\left(x^2+2\cdot\dfrac{5}{2}\cdot x+\dfrac{25}{4}\right)-\dfrac{23}{2}\)

Ta có: \(2\left(x^2+2\cdot\dfrac{5}{2}\cdot x+\dfrac{25}{4}\right)\ge0\forall x\)

\(\Rightarrow2\left(x^2+2\cdot\dfrac{5}{2}\cdot x+\dfrac{25}{4}\right)-\dfrac{23}{2}\ge-\dfrac{23}{2}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\) x = \(\dfrac{-5}{2}\)

Vậy \(MIN\) \(B=\dfrac{-23}{2}\Leftrightarrow x=\dfrac{-5}{2}\)

c) \(C=5x-x^2\)

\(\Rightarrow C=-\left(x^2-5x\right)\)

\(\Rightarrow C=-\left(x^2-2\cdot\dfrac{5}{2}\cdot x+\dfrac{25}{4}\right)+\dfrac{25}{4}\)

\(\Rightarrow C=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\)

Ta có: \(-\left(x-\dfrac{5}{2}\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\) x = \(\dfrac{5}{2}\)

Vậy \(MAX\) \(C=\dfrac{25}{4}\Leftrightarrow x=\dfrac{5}{2}\)

11 tháng 8 2016

\(a,A=x^2-6x+11=\left(x-3\right)^2+2\)\(\Leftrightarrow Amin=2\)

Dấu = xảy ra \(\Leftrightarrow x=3\)

11 tháng 8 2016

\(2x^2+10x-1=2\left(x^2+5x-\frac{1}{2}\right)=2\left(x^2+2.\frac{5}{2}x+\frac{25}{4}-\frac{27}{4}\right)=2\left(x+\frac{5}{2}\right)^2-\frac{27}{2}\)

\(\Rightarrow Bmin=\frac{-27}{2}.''=''\Leftrightarrow x=\frac{-5}{2}\)

13 tháng 10 2016

Mình chỉ tìm giá trị chứ không tìm x đâu nhé (đề bài ghi thế)

a) 

\(A=x^2-6x+11\\ =x^2-6x+9+2\\ =\left(x-3\right)^2+2\)

\(\left(x-3\right)^2\ge0\forall x\\ 2\ge2\\ \Rightarrow\left(x-3\right)^2+2\ge2\forall x\\ A\ge2\forall x\\ \Rightarrow A_{min}=2\)

 

 

13 tháng 10 2016

b) B = 2x2 + 10 - 1

B = 2(x2 + 5) - 1

B = 2(x2 + 2.\(\frac{5}{2}\).x + \(\frac{25}{4}\)) -  \(\frac{25}{2}\) - 1

B = 2(x + \(\frac{5}{2}\))2 - \(\frac{27}{2}\)

Vậy GTNN của B = \(\frac{-27}{2}\) khi x = \(\frac{-5}{2}\).

c) C = 5x - x2

C = -(x2 - 5x)

C = -(x2 - 2.\(\frac{5}{2}\).x + \(\frac{25}{4}\)) + \(\frac{25}{4}\)

C = -(x - \(\frac{5}{2}\))2 + \(\frac{25}{4}\)

Vậy GTLN của C = \(\frac{25}{4}\) khi x = \(\frac{5}{2}\).

13 tháng 10 2016

A=11

B=9

C=0

13 tháng 10 2016

a) \(A=x^2-6x+11\)

\(A=x^2-6x+9+2\)

\(A=\left(x-3\right)^2+2\)

Có: \(\left(x-3\right)^2\ge0\Rightarrow\left(x-3\right)^2+2\ge2\)

Dấu = xảy ra khi: \(\left(x-3\right)^2=0\Rightarrow x-3=0\Rightarrow x=3\)

Vậy: \(Min_A=2\) tại \(x=3\)

b) \(B=2x^2+10x-1\)

\(B=2x^2+10x+\frac{25}{2}-\frac{27}{2}\)

\(B=\left(\sqrt{2}x-\sqrt{\frac{25}{2}}\right)^2-\frac{27}{2}\)

Có: \(\left(\sqrt{2}x-\sqrt{\frac{25}{2}}\right)^2\ge0\Rightarrow\left(\sqrt{2}x-\sqrt{\frac{25}{2}}\right)^2-\frac{27}{2}\ge-\frac{27}{2}\)

Dấu = xảy ra khi: \(\left(\sqrt{2}x-\sqrt{\frac{25}{2}}\right)^2=0\Rightarrow\sqrt{2}x-\sqrt{\frac{25}{2}}=0\Rightarrow x=\frac{5}{2}\)

Vậy: \(Min_B=-\frac{27}{2}\) tại \(x=\frac{5}{2}\)

c) \(C=5x-x^2\) 

\(C=\frac{25}{4}-x^2+5x-\frac{25}{4}\)

\(C=\frac{25}{4}-\left(x-\frac{5}{2}\right)^2\)

Có: \(\left(x-\frac{5}{2}\right)^2\ge0\Rightarrow\frac{25}{4}-\left(x-\frac{5}{2}\right)^2\le\frac{25}{4}\)

Dấu = xảy ra khi: \(\left(x-\frac{5}{2}\right)^2=0\Rightarrow x-\frac{5}{2}=0\Rightarrow x=\frac{5}{2}\)

Vậy: \(Max_C=\frac{25}{4}\) tại \(x=\frac{5}{2}\)

15 tháng 10 2023

\(a,\\ A=25x^2-10x+11\\ =\left(5x\right)^2-2.5x.1+1^2+10\\ =\left(5x+1\right)^2+10\ge10\forall x\in R\\ Vậy:min_A=10.khi.5x+1=0\Leftrightarrow x=-\dfrac{1}{5}\\ B=\left(x-3\right)^2+\left(11-x\right)^2\\ =\left(x^2-6x+9\right)+\left(121-22x+x^2\right)\\ =x^2+x^2-6x-22x+9+121=2x^2-28x+130\\ =2\left(x^2-14x+49\right)+32\\ =2\left(x-7\right)^2+32\\ Vì:2\left(x-7\right)^2\ge0\forall x\in R\\ Nên:2\left(x-7\right)^2+32\ge32\forall x\in R\\ Vậy:min_B=32.khi.\left(x-7\right)=0\Leftrightarrow x=7\\Tương.tự.cho.biểu.thức.C\)

15 tháng 10 2023

b:

\(D=-25x^2+10x-1-10\)

\(=-\left(25x^2-10x+1\right)-10\)

\(=-\left(5x-1\right)^2-10< =-10\)

Dấu = xảy ra khi x=1/5

\(E=-9x^2-6x-1+20\)

\(=-\left(9x^2+6x+1\right)+20\)

\(=-\left(3x+1\right)^2+20< =20\)

Dấu = xảy ra khi x=-1/3

\(F=-x^2+2x-1+1\)

\(=-\left(x^2-2x+1\right)+1=-\left(x-1\right)^2+1< =1\)

Dấu = xảy ra khi x=1

18 tháng 7 2019

A = x2 - 6x + 11 

Nhập phương trình vào máy tính lặp 3 lần  dấu =

GTNN của A = 3

B = 2x2 + 10x - 1

Nhập phương trình vào máy tính lặp 3 lần dấu =

GTNN của B = \(-\frac{5}{2}\)

C = 5x - x2 

=> C = -x2 + 5x

Nhập phương trình vào máy tính lặp 3 lần dấu =

GTLN của C = \(\frac{5}{2}\)

18 tháng 7 2019

Trả lời

MK trả lời câu hỏi trc của bạn rùi nha 

https://olm.vn/hoi-dap/detail/225394580109.html

hok tốt

16 tháng 12 2014

a) 2

b) 25/4

c)  -9/2

3 tháng 8 2020

a) \(A=x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\)

\(\left(x-3\right)^2\ge0\forall x\Rightarrow\left(x-3\right)^2+2\ge2\)

Đẳng thức xảy ra <=> x - 3 = 0 => x = 3

Vậy AMin = 2 , đạt được khi x = 3

b) \(B=5x-x^2=-x^2+5x=-x^2+5x-\frac{25}{4}+\frac{25}{4}=-\left(x^2-5x+\frac{25}{4}\right)+\frac{25}{4}=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\)

\(-\left(x-\frac{5}{2}\right)^2\le0\forall x\Rightarrow-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)

Đẳng thức xảy ra <=> x - 5/2 = 0 => x = 5/2

Vậy BMax = 25/4 , đạt được khi x = 5/2

c) \(2x-2x^2-5=-2x^2+2x-5=-2\left(x^2-x+\frac{1}{4}\right)-\frac{9}{2}=-2\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\)

\(-2\left(x-\frac{1}{2}\right)^2\le0\forall x\Rightarrow-2\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\le-\frac{9}{2}\)

Đẳng thức xảy ra <=> x - 1/2 = 0 => x = 1/2

Vậy CMax = -9/2 , đạt được khi x = 1/2

a: Ta có: \(x^2+x+1\)

\(=x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)

b: Ta có: \(-x^2+x+2\)

\(=-\left(x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{9}{4}\right)\)

\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)