Cho tam giác ABC cân tại A ( góc BAC nhọn ) , đường cao AH . Kẻ HP vuông góc với AB , HQ vuông góc với AC
a. Chứng minh tam giác AHP = tam giác AHQ
b. Chứng minh PQ // BC
c. Gọi E là giao điểm của tia AB và tia QH . Chứng minh BP < BE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔBAC cân tại A
mà AH là đường cao
nên AH là phân giác của góc BAC
Xét ΔAPH vuông tại P và ΔAQH vuông tại Q có
AH chung
góc PAH=góc QAH
=>ΔAPH=ΔAQH
b: Xét ΔABC có AP/AB=AQ/AC
nên PQ//BC
\(a)\)xét\(\Delta ABH\)và\(\Delta ACH\)có:
\(\widehat{AHC}=\widehat{AHB}=90^o\)(vì\(AH\)là đường cao của \(\Delta ABC\))
\(AB=AC\)(vì \(\Delta ABC\)cân)
\(\widehat{ABC}=\widehat{ACB}\)(vì\(\Delta ABC\)cân)
\(\Rightarrow\Delta ABH=\Delta ACH\)
\(\Rightarrow\widehat{BAH}=\widehat{CAH}\)(2 cạnh tương ứng)
Xét \(\Delta AHP\)và\(\Delta AHQ\)có:
\(AH\)chung
\(\widehat{APH}=\widehat{AQH}=90^o\)(vì\(HP\perp AB\equiv P\)và \(HQ\perp AC\equiv Q\))
\(\widehat{BAH}=\widehat{CAH}\)(chứng minh trên)
\(\Rightarrow\Delta AHP=\Delta AHQ\)(cạnh huyền-góc nhọn)
\(b)\)Gọi giao điểm của PQ và AH là I
Xét \(\Delta AIP\)và \(\Delta AIQ\)có:
\(\widehat{BAH}=\widehat{CAH}\)(vì\(\Delta AHB=\Delta AHC\))
\(AI\)chung
\(AP=AQ\)(vì \(\Delta AHP=\Delta AHQ\))
\(\Rightarrow\Delta AIP=\Delta AIQ\)(c.g.c)
\(\Rightarrow\widehat{AIP}=\widehat{AIQ}\)(2 cạnh tương ứng)
Mà\(\widehat{AIP}+\widehat{AIQ}=180^o\)(vì kề bù)
\(\Rightarrow\widehat{AIP}=\widehat{AIQ}=\frac{180^o}{2}\)\(=90^o\)
\(\Rightarrow AH\perp PQ\)
mà\(AH\perp BC\)(vì \(AH\)là đường cao của \(\Delta ABC\))
\(\Rightarrow PQ//BC\)(vì cùng \(\perp AH\))
chúc ngươi học tốt !
a: ΔBAC cân tại A
mà AH là đường cao
nên AH là phân giác của góc BAC
Xét ΔAPH vuông tại P và ΔAQH vuông tại Q có
AH chung
góc PAH=góc QAH
=>ΔAPH=ΔAQH
b: Xét ΔABC có AP/AB=AQ/AC
nên PQ//BC
Bạn ghi lại đề câu c nha
a: ΔBAC cân tại A
mà AH là đường cao
nên AH là phân giác của góc BAC
Xét ΔAPH vuông tại P và ΔAQH vuông tại Q có
AH chung
góc PAH=góc QAH
=>ΔAPH=ΔAQH
b: Xét ΔABC có AP/AB=AQ/AC
nên PQ//BC
a: Xét tứ giác APNQ có
góc APN=góc AQN=góc PAQ=90 độ
nên APNQ là hình chữ nhật
=>AN=PQ
b: AQNP là hình chữ nhật
nên AN cắt QP tại trung điểm của mỗi đường
=>I là trung điểm chung của QP và AN
ΔAMN vuông tại M
mà MI là trung tuyến
nên MI=AN/2=PQ/2
Xét ΔMPQ có
MI là trung tuyến
MI=PQ/2
Do đó: ΔMPQ vuông tại M
a: Xét ΔBEC vuông tại E và ΔCDB vuông tại D có
BC chung
\(\widehat{EBC}=\widehat{DCB}\)
Do đó: ΔBEC=ΔCDB
b: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
BD=CE
Do đó: ΔABD=ΔACE
Xét ΔBEK vuông tại E và ΔCDK vuông tại D có
EB=DC
\(\widehat{EBK}=\widehat{DCK}\)
Do đó: ΔBEK=ΔCDK
c: Xét ΔBAK và ΔCAK có
BA=CA
AK chung
BK=CK
Do đó: ΔBAK=ΔCAK
Suy ra: \(\widehat{BAK}=\widehat{CAK}\)
hay AK là tia phân giác của góc BAC
a) Xét tam giác AHB vuông tai H và tam giác AHC vuông tại H có
AH chung
AB=AC(2 cạnh bên của tam giác ABC cân)
Do đó tam giác AHB=tam giác AHC ( cạnh huyền - cạnh góc vuông)
=> góc BAH = góc CAH ( 2 góc t/ứ)
Xét tam giác AHP vuông tại P và tam giác AHQ vuông tại Q có
AH chung
góc BAH=góc CAH(cmt)
Do đó tam giác vuông AHP=tam giác vuông AHQ(cạnh huyền - góc nhọn)
b)Vì tam giác ABC cân tại A => góc ABC = (180* - góc BAC) :2 (1)
Xét tam giác APQ có AP=AQ( 2cạnh t/ứ của tam giác AHP=tam giác AHQ)
=> tam giác APQ cân tại A ( đ/n tam giác cân)
=> góc APQ = (180* - góc BAC):2 (2)
Từ 1 và 2 => góc APQ = Góc ABC
mà 2 góc này ở vị trí là 2 góc đồng vị
=> PQ // BC