Cho hai đường tròn đồng tâm O. Gọi AB là dây bất kì của đường tròn nhỏ. Đường thẳng AB cắt đường tròn lởn C và D ( A nằm giữa B và C). So sánh các độ dài Ac và BD ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ OI ⊥ AB. Ta có: OI ⊥ CD
Trong đường tròn (O) (nhỏ) ta có : OI ⊥ AB
Suy ra :
IA = IB (đường kính vuông góc dây cung) (1)
Trong đường tròn (O) (lớn) ta có : OI ⊥ CD
Suy ra :
IC = ID (đường kính vuông góc dây cung)
Hay IA + AC = IB + BD (2)
Từ (1) và (2) suy ra: AC = BD.
Lời giải:
a) Xét tam giác $MBC$ và $MDB$ có:
$\widehat{M}$ chung
$\widehat{MBC}=\widehat{MDB}$ (do là góc nt chắn 2 cung MB và MA bằng nhau)
$\Rightarrow \triangle MBC\sim \triangle MDB$ (g.g)
$\Rightarrow \frac{MB}{MD}=\frac{MC}{MB}\Rightarrow MB^2=MC.MD$
Mà $MB=MA$ nên $MA^2=MC.MD$ (đpcm)
b) Đã chứng minh ở phần a.
a, Ta chứng minh E là trung điểm của AC nên OE = 1 2 BC
Tương tự ta có OF = 1 2 DB
Mà BC < BD ta suy ra OE < OF
b, Chứng minh được A E 2 = A O 2 - O E 2 và A F 2 = A O 2 - O F 2
Từ đó ta có A E 2 > A F 2 => AE > AF
=> sđ A E ⏜ ; A F ⏜
a: Xét tứ giác OBAC có
góc OBA+góc OCA=180 độ
nên OBAC là tứ giác nội tiêp
Tâm là trung điểm của OA
b: Xét tứ giác OHAC có
góc OHA+góc OCA=180 độ
=>OHAC là tứ giác nội tiếp
=>góc CHA=góc AOC
Xét tứ giác OHBA có
góc OHA=góc OBA=90 độ
nên OHBA là tứ giác nội tiếp
=>góc BHA=góc BOA=góc COA=góc CHA
=>HA là phân giác của góc BHC