ai làm giúp mình câu này với khó quá
x\(\sqrt{\text{3x - 2}}\) + (x + 1)\(\sqrt{5x-1}\) = 8x - 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\left(3x+1\right)\sqrt{3x+1}=8x^2+5x+1\)
\(pt\Leftrightarrow\left(3x+1\right)\sqrt{3x+1}=8x^2+5x+1\)
\(\Leftrightarrow\frac{\left(3x+1\right)^3-1}{\left(3x+1\right)\sqrt{3x+1}+1}=8x^2+5x\)
\(\Leftrightarrow\frac{\left(3x+1-1\right)\left[\left(3x+1\right)^2+3x+2\right]}{\left(3x+1\right)\sqrt{3x+1}+1}=x\left(8x+5\right)\)
\(\Leftrightarrow\frac{9x\left(3x^2+3x+1\right)}{\left(3x+1\right)\sqrt{3x+1}+1}-x\left(8x+5\right)=0\)
\(\Leftrightarrow x\left(\frac{9\left(3x^2+3x+1\right)}{\left(3x+1\right)\sqrt{3x+1}+1}-\left(8x+5\right)\right)=0\)
\(\Rightarrow x=0\), nghiệm còn lại khó quá t gg =))
b)\(9x+17=6\sqrt{8x+1}+4\sqrt{x+3}\)
ĐK:\(x\ge-\frac{1}{8}\)
\(pt\Leftrightarrow9x-9=6\sqrt{8x+1}-18+4\sqrt{x+3}-8\)
\(\Leftrightarrow9\left(x-1\right)=\frac{36\left(8x+1\right)-324}{6\sqrt{8x+1}+18}+\frac{16\left(x+3\right)-64}{4\sqrt{x+3}+8}\)
\(\Leftrightarrow9\left(x-1\right)=\frac{288x-288}{6\sqrt{8x+1}+18}+\frac{16x-16}{4\sqrt{x+3}+8}\)
\(\Leftrightarrow9\left(x-1\right)-\frac{288\left(x-1\right)}{6\sqrt{8x+1}+18}-\frac{16\left(x-1\right)}{4\sqrt{x+3}+8}=0\)
\(\Leftrightarrow\left(x-1\right)\left(9-\frac{288}{6\sqrt{8x+1}+18}-\frac{16}{4\sqrt{x+3}+8}\right)=0\)
Suy ra x=1 là nghiệm duy nhất
a) x=8 hoặc x=-1
Đặt ẩn phụ
g) x=1 hoặc x=2 hoặc x=-3
Phân tích thành nhân tử rồi xét giá trị
\(\sqrt{1+x}+\sqrt{8-x}+\sqrt{\left(x+1\right)\left(8-x\right)}=3\)
\(đkxđ\Leftrightarrow\hept{\begin{cases}x+1\ge0\\8-x\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge-1\\x\le8\end{cases}\Rightarrow}-1\le x\le8}\)
Đặt \(\sqrt{1+x}=a\Rightarrow x+1=a^2.\)
\(a+b+ab=3\)
và \(\sqrt{8-x}=b\Rightarrow8-x=b^2\)\(\left(a,b\ge0\right)\)
Cộng hai vế xuống ta có :
\(a^2+b^2=x+1+8-x=9\)
Theo phương trình ta lại có :
\(a+b+ab=3\)
Ta có hệ phương trình :
\(\hept{\begin{cases}a^2+b^2=9\\a+b+ab=3\end{cases}}\)
Giải hệ ra tính nốt nhá :)) Mình nghĩ bài này chỉ làm theo cách này ngắn nhất thôi
`@` `\text {Ans}`
`\downarrow`
`(8x-3)(3x+2)-(4x+7)(x+4)=(2x+1)(5x-1)-33`
`\Leftrightarrow 8x(3x+2) -3(3x+2) - 4x(x+4) + 7(x+4) = 2x(5x-1) + 5x-1 - 33`
`\Leftrightarrow 24x^2 + 16x - 9x - 6 - 4x^2 - 16x - 7x - 28 = 10x^2 - 2x + 5x - 1 - 33`
`\Leftrightarrow 20x^2 -16x - 34 = 10x^2 + 3x - 34`
`\Leftrightarrow 20x^2 - 16x - 34 - 10x^2 - 3x + 34 = 0`
`\Leftrightarrow 10x^2 - 19x = 0`
`\Leftrightarrow x(10x - 19)=0`
`\Leftrightarrow `\(\left[{}\begin{matrix}x=0\\10x-19=0\end{matrix}\right.\)
`\Leftrightarrow `\(\left[{}\begin{matrix}x=0\\10x=19\end{matrix}\right.\)
`\Leftrightarrow `\(\left[{}\begin{matrix}x=0\\x=\dfrac{19}{10}\end{matrix}\right.\)
Vậy, `x={0; 19/10}.`
Câu 1 là \(\left(8x-4\right)\sqrt{x}-1\) hay là \(\left(8x-4\right)\sqrt{x-1}\)?
Câu 1:ĐK \(x\ge\frac{1}{2}\)
\(4x^2+\left(8x-4\right)\sqrt{x}-1=3x+2\sqrt{2x^2+5x-3}\)
<=> \(\left(4x^2-3x-1\right)+4\left(2x-1\right)\sqrt{x}-2\sqrt{\left(2x-1\right)\left(x+3\right)}\)
<=> \(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}\left(2\sqrt{x\left(2x-1\right)}-\sqrt{x+3}\right)=0\)
<=> \(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}.\frac{8x^2-4x-x-3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}=0\)
<=>\(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}.\frac{\left(x-1\right)\left(8x+3\right)}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}=0\)
<=> \(\left(x-1\right)\left(4x+1+2\sqrt{2x-1}.\frac{8x+3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}\right)=0\)
Với \(x\ge\frac{1}{2}\)thì \(4x+1+2\sqrt{2x-1}.\frac{8x-3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}>0\)
=> \(x=1\)(TM ĐKXĐ)
Vậy x=1
ĐKXĐ: \(x\ge\dfrac{2}{3}\)
\(\Leftrightarrow x\sqrt{3x-2}-x^2+\left(x+1\right)\sqrt{5x-1}-\left(x+1\right)^2+x^2+\left(x+1\right)^2-8x+3=0\)
\(\Leftrightarrow x\left(\sqrt{3x-2}-x\right)+\left(x+1\right)\left(\sqrt{5x-1}-x-1\right)+2\left(x^2-3x+2\right)=0\)
\(\Leftrightarrow\dfrac{-x\left(x^2-3x+2\right)}{\sqrt{3x-2}+x}+\dfrac{-\left(x+1\right)\left(x^2-3x+2\right)}{\sqrt{5x-1}+x+1}+2\left(x^2-3x+2\right)=0\)
\(\Leftrightarrow\left(x^2-3x+2\right)+\left(2-\dfrac{x}{\sqrt{3x-2}+x}-\dfrac{x+1}{\sqrt{5x-1}+x+1}\right)=0\)
\(\Leftrightarrow\left(x^2-3x+2\right)\left(\dfrac{\sqrt{3x-2}}{\sqrt{3x-2}+x}+\dfrac{\sqrt{5x-1}}{\sqrt{5x-1}+x+1}\right)=0\)
\(\Leftrightarrow x^2-3x+2=0\) (ngoặc đằng sau luôn dương)
\(\Leftrightarrow...\)