K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2017

Nếu AB = BC = CA thì ba đoạn này tạo thành 1 tam giác đều.

=> Ít nhất nó cx là 1 tam giác =))

=> A, B, C là 3 đỉnh của 1 tam giác :D

4 tháng 5 2017

Nếu AB= BC= Ca, ta có :ba đoạn trên tạo nên 1 hình tam giác đều.

tam giác đều( hay mọi tam giác ) đều được tạo với ba cạnh và ba đỉnh.

nếu ba cạnh này tạo nên tam giác đều thì cũng sẽ tạo ra 3 góc, đó là: góc đỉnh A; góc đỉnh B; góc đỉnhC.Ba đỉnh A,B,C là 3 đỉnh của góc: góc đỉnh A, Góc đỉnhB, góc đỉnh C=>A,B,C cũng là đỉnh của hình tam giác.

17 tháng 6 2016

Từ AB=BC=CA

suy ra: AB+BC=2CA > CA

BC + AC = 2AB > AB

AB+AC = 2BC > BC

Suy ra A,B,C là 3 đỉnh của 1 tam giác vì nó thỏa mãn tính chất: Tổng 2 cạnh lớn  hơn cạnh còn lại.

6 tháng 5 2017

Mk nghĩ là

3 điểm A,B,C là 3 đỉnh của tam giác ABC vì

+ 3 điểm này là 3 điểm riêng biệt thì khi nối chúng lại được tam giác ABC và 3 điểm đó cũng chính là 3 đỉnh của tam giác

+ ba đoạn thẳng AB,BC,CA đều có những điểm chung vậy chắc chắn sẽ tạo thành một tam giác có đỉnh chinh là 3 điểm chung ấy

6 tháng 8 2021

đm con mặt lồn

6 tháng 8 2021

im đi Lê Minh Phương

Bài 1: (4,0 điểm). Cho biểu thức a) Rút gọn biểu thức P.b) Tìm x để .c) Tìm giá trị nguyên của x để P nhận giá trị là số nguyên.Bài 2: (4,5 điểm). a) Giải phương trình : .b) Phân tích đa thức sau thành nhân tử: (x + 2)(2x2 – 5x) - x3 - 8c) Cho x, y, z là các số khác 0 và đôi một khác nhau thỏa mãn: . Tính giá trị của biểu thức: .Bài 3: (4,0 điểm). a) Tìm tất cả các cặp số nguyên (x; y) thỏa...
Đọc tiếp

Bài 1: (4,0 điểm). Cho biểu thức 
a) Rút gọn biểu thức P.
b) Tìm x để .
c) Tìm giá trị nguyên của x để P nhận giá trị là số nguyên.
Bài 2: (4,5 điểm). 
a) Giải phương trình : .
b) Phân tích đa thức sau thành nhân tử: (x + 2)(2x2 – 5x) - x3 - 8
c) Cho x, y, z là các số khác 0 và đôi một khác nhau thỏa mãn: . Tính giá trị của biểu thức: .
Bài 3: (4,0 điểm). 
a) Tìm tất cả các cặp số nguyên (x; y) thỏa mãn: y(x – 1) = x2 + 2
b) Chứng minh rằng nếu các số nguyên a, b, c thỏa mãn b2 – 4ac và b2 + 4ac đồng thời là các số chính phương thì abc  30. 
Bài 4: (6,0 điểm). 
1) Cho tam giác ABC vuông tại A. Lấy một điểm M bất kỳ trên cạnh AC. Từ C vẽ một đường thẳng vuông góc với tia BM, đường thẳng này cắt tia BM tại D, cắt tia BA tại E, EM cắt BC tại I.
a) Chứng minh EA.EB = ED.EC.
b) Chứng minh .
c) Chứng minh BM.BD + CM.CA = BC2.
d) Vẽ đường thẳng vuông góc với AB tại B, đường thẳng vuông góc với CD tại C, chúng cắt nhau tại K. Chứng minh MK luôn đi qua một điểm cố định khi M thay đổi.
e) Đặt BC = a; EC = b; BE = c; AD = a’; AI = b’; DI = c’.
Chứng minh .
2) Cho điểm D thay đổi trên cạnh BC của tam giác nhọn ABC (D khác B và C). Từ D kẻ đường thẳng song song với AB cắt cạnh AC tại điểm N. Cũng từ D kẻ đường thẳng song song với AC cắt cạnh AB tại điểm M. Tìm vị trí của D để đoạn thẳng MN có độ dài nhỏ nhất 
Bài 5: (1,5 điểm). Cho a, b, c > 0 thỏa mãn: a2 + b2 + c2 = 1. Chứng minh rằng 

(1)/(1-ab)+(1)/(1-bc)+(1)/(1-ca)<=9/2

 

2
8 tháng 4 2016

Bạn tự giải luôn đi!

8 tháng 4 2016

dài quá, ko muốn giải

22 tháng 10 2021

Hình tự vẽ nha.

a)

+ Xét\(\Delta\)ABC có M là trung điểm của BC

                                 E là trung điểm của AC

=> ME là đường trung bình của\(\Delta\)ABC

=> ME // AB

Cmtt: DM // AC

+ Xét tứ giác ADME có ME // AD (do ME // AB, D thuộc AB)

                                     DM // AE (do DM // AC, E thuộc AC)

=> ADME là hình bình hành (dhnb)

Vậy ADME là hình bình hành.

b)

Có ADME là hình bình hành

Để tứ giác ADME là hình chữ nhật

<=>\(\widehat{DAE}=90^0\)

<=>\(\widehat{BAC}=90^0\)

<=>\(\Delta\)ABC vuông tại A

Vậy để ADME là hình chữ nhật thì \(\Delta\)ABC vuông tại A.