OLM cung cấp gói bải giảng điện tử PPT cho giáo viên đầu năm học
Thi thử và xem hướng dẫn giải chi tiết đề tham khảo 12 môn thi Tốt nghiệp THPT 2025
Tham gia cuộc thi "Nhà giáo sáng tạo" ẫm giải thưởng với tổng giá trị lên đến 10 triệu VNĐ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho A = 1/1+3 + 1/1+3+5 + 1/1+3+5+7 + 1/1+3+.....+2013
Chứng minh A < 3/4
Ta có :
\(A=\dfrac{1}{1+3}+\dfrac{1}{1+3+5}+...........+\dfrac{1}{1+3+.....+2013}\)
\(A=\dfrac{1}{\dfrac{\left(1+3\right).2}{2}}+\dfrac{1}{\dfrac{\left(1+5\right).3}{2}}+.........+\dfrac{1}{\dfrac{\left(1+2013\right).1007}{2}}\)
\(A=\dfrac{2}{2.4}+\dfrac{2}{3.6}+\dfrac{2}{4.8}+...........+\dfrac{2}{1007.2014}\)
\(A=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+..........+\dfrac{1}{1007.1007}\)
\(\Rightarrow A< \dfrac{1}{2.2}+\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+......+\dfrac{1}{1006.1008}\right)\)
\(\Rightarrow A< \dfrac{1}{4}+\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...........+\dfrac{1}{1006}-\dfrac{1}{1007}\right)\)
\(\Rightarrow A< \dfrac{1}{4}+\left(\dfrac{1}{2}-\dfrac{1}{1007}\right)\)
\(\Rightarrow A< \dfrac{1}{4}+\dfrac{1}{2}=\dfrac{3}{4}\) \(\rightarrowđpcm\)
~ Chúc bn học tốt ~
Cho A =\(\frac{1}{1+3}+\frac{1}{1+3+5}+\frac{1}{1+3+5+7}+...+\frac{1}{1+3+...+2013}\)
Chứng minh A < \(\frac{3}{4}\)
cho A=1*4/2*3 + 2*5/3*4+3*6/4*5+.....+2013*2016/2014*2015 . Chứng minh 2012< A < 2013
1.Chứng tỏ:
A-9+9^2+9^3+...+9^100 CHIA HẾT CHO 91
2.so sánh A và B
Biết A=2015^2001 ;B=2014^2000+2014^2001
3.tìm chữ số tận cùng của
A= 2^1+2^2+2^3+...+2^20
4.chứng minh A= 2^1+2^2+2^3+2^4+...+2^2016 chia hết cho6
5.A= 5^0+5^1+5^2+...+5^2002 chia cho 31 dư bao nhiêu?
6.Cho A= (-1)+2+(-3)+4+(-5)+6+....+(-2007)+2008+(-2009)+2010.Chứng minh A chia hết cho 5
7.tìm số dư khi chia số A=7^1+7^2+7^3+...+7^2013
8.tìm 2 số tự nhiên a,b biết a-b = 279 . Khi chia achio b thì được thương là 5 dư 3
9.Cho A=3^ 2013-11^671 . Chứng minh A chia hết cho2
Help me . Mai em nộp rồi. Em hiểu là đề hơi dài nhưng giúp em nhé. Xinh cảm ơn trước ạ!!!
.................
Hãy chứng minh A lớn hơn1/2 với A bằng -1/3²+1/-5²+-1/7²+...+-1/2011²+1/-2013²
A) Chứng minh: A=2^1+2^2+2^3+2^4+.........+2^2010 chia hết cho 3 và 7
B)Chứng minh:B=3^1+3^2+3^3+3^4+..........+2^2010 chia hết cho 4 và 13
C) Chứng minh C=5^1+5^2+5^3+5^4+.......+5^2010 chia hết cho 6 và 31
D) Chứng minh D=7^1+7^2+7^3+7^4+........+7^2010 chia hết cho 8 và 57
Minh lam cau A) thoi duoc hong
chứng minh rằng:1/5^3+1/6^3+1/7^3+....+1/2013^3<1/40
CHỨNG MINH 1/2-1/3+1/4-1/5+1/6-1/7+....+1/2012-1/2013+1/2014 < 2/5
chứng minh : 1/2 - 1/3 + 1/4 - 1/5 + 1/6 - 1/7+.............+ 1/2012 - 1/2013 + 1/2014 < 2/5 giải hộ mik
Chứng minh S=1/2-1/3+1/4-1/5+1/6-1/7+...+1/2012-1/2013+1/2014 <2/5
Ta có :
\(A=\dfrac{1}{1+3}+\dfrac{1}{1+3+5}+...........+\dfrac{1}{1+3+.....+2013}\)
\(A=\dfrac{1}{\dfrac{\left(1+3\right).2}{2}}+\dfrac{1}{\dfrac{\left(1+5\right).3}{2}}+.........+\dfrac{1}{\dfrac{\left(1+2013\right).1007}{2}}\)
\(A=\dfrac{2}{2.4}+\dfrac{2}{3.6}+\dfrac{2}{4.8}+...........+\dfrac{2}{1007.2014}\)
\(A=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+..........+\dfrac{1}{1007.1007}\)
\(\Rightarrow A< \dfrac{1}{2.2}+\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+......+\dfrac{1}{1006.1008}\right)\)
\(\Rightarrow A< \dfrac{1}{4}+\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...........+\dfrac{1}{1006}-\dfrac{1}{1007}\right)\)
\(\Rightarrow A< \dfrac{1}{4}+\left(\dfrac{1}{2}-\dfrac{1}{1007}\right)\)
\(\Rightarrow A< \dfrac{1}{4}+\dfrac{1}{2}=\dfrac{3}{4}\) \(\rightarrowđpcm\)
~ Chúc bn học tốt ~