tìm a,b thuộc N biết 1/a+1/b=1/4 và a<btìm a,b thuộc N biết 1/a+1/b=1/4 và a<b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn nên xem lại đề vì 61440 ms làm đc
Tích của a/32 với b/32 là:
61440 : 32 : 32= 60.
Chắc chắn a/32 và b/32 sẽ nguyên tố cùng nhau vì ước chung ln của chúng là 32.
Vậy a là 5.32=160 và b là 12.32=384
1) Coi a< b
ƯCLN (a;b) = 56 . Đặt a = 56m; b = 56n (m; n nguyên tố cùng nhau và m < n)
a + b = 224 => 56m + 56n = 224 => m + n = 4 => m = 1; n =3 => a = 56 và b = 168
Vậy...
2) Gọi d = ƯCLN(2n + 2; 2n+ 3)
=> 2n + 1 chia hết cho d; 2n +3 chia hết cho d
=> 2n + 3 - (2n + 1) chia hết cho d => 2 chia hết cho d => d = 1 hoặc d = 2
Mà 2n + 1 lẻ nên 2n + 1 không chia hết cho 2 => d = 1
Vậy...
3) Áp dụng công thức ƯCLN(a;b) . BCNN(a;b) = a.b => ƯCLN(a;b) = 2400 : 120 = 20
Đặt a = 20m; b= 20n( m; n nguyên tố cùng nhau; coi m< n)
a.b = 20m.20n = 400mn = 2400 => m.n = 6 = 1.6 = 2.3
+) m = 1; n = 6 => a = 20; b = 120
+) m = 2; n = 3 => a = 40; b = 60
Vây,...
4) a chia hết cho b nên BCNN(a;b) = a = 18
=> b \(\in\)Ư(18) = {1;2;3;6;9;18}
vậy,,,
b: Ta có: \(2^{x+3}+2^x=144\)
\(\Leftrightarrow2^x\cdot9=144\)
\(\Leftrightarrow2^x=16\)
hay x=4
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{4}{5}\)
Do vai trò \(a,b,c\)như nhau nên không mất tính tổng quát, giả sử \(a\ge b\ge c>0\).
Khi đó \(\frac{4}{5}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le\frac{3}{c}\Rightarrow c\le\frac{15}{4}\Rightarrow c\le3\).
Với \(c=3\):
\(\frac{7}{15}=\frac{1}{a}+\frac{1}{b}\le\frac{2}{b}\Rightarrow b\le\frac{30}{7}\Rightarrow b\le4\)
\(b=4\Rightarrow\frac{1}{a}=\frac{13}{60}\)loại.
\(b=3\Rightarrow\frac{1}{a}=\frac{2}{15}\)loại.
Với \(c=2\):
\(\frac{3}{10}=\frac{1}{a}+\frac{1}{b}\le\frac{2}{b}\Rightarrow b\le\frac{20}{3}\Rightarrow b\le6\).
Xét từng giá trị của \(b\)ta được các nghiệm là \(b=5,a=10,b=4,a=20\).
Với \(c=1\):
\(\frac{1}{a}+\frac{1}{b}=-\frac{1}{5}\)loại.
Vậy phương trình có các nghiệm là: \(\left(10,5,2\right),\left(20,4,2\right)\)và các hoán vị.
\(\frac{3n+2}{n-1}=\frac{3n-3+5}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=3+\frac{5}{n-1}\)
Để \(3+\frac{5}{n-1}\) là số nguyên <=> \(\frac{5}{n-1}\) là số nguyên
=> n - 1 thuộc Ư(5) = { - 5; - 1; 1; 5 }
Ta có bảng sau :
n - 1 | - 5 | - 1 | 1 | 5 |
n | - 4 | 0 | 2 | 6 |
Vậy n = { - 4 ; 0 ; 2 ; 6 }
Ta có: \(\frac{1}{a}\)+\(\frac{1}{b}\)=\(\frac{2}{143}\)\(\Rightarrow\)\(\frac{a+b}{ab}\)=\(\frac{2}{143}\)\(\Rightarrow\)143(a+b)=2ab (1)
Mặt khác: a-b=2\(\Rightarrow\)a=2+b (2)
Thay (2) vào (1) ta có:
143(2+b+b)=2(2+b)b\(\Leftrightarrow\)286+286b=b(4+2b)=286+286b=4b+2bb\(\Leftrightarrow\)2bb+4b-286b-286=0\(\Leftrightarrow\)2bb-282b-286=0
mk chinh lại đề bài:
a) tìm a thuộc N ( a nhỏ nhất) biết: a chia 4;7;9 có số dư lần lượt là: 1;4;6
b) Tìm (a nhỏ nhất) a thuộc N biết: a chia 4 dư 1: a chia 7 dư 4
Bài làm
a) \(a\)chia \(4\)dư \(1\)\(\Rightarrow\)\(a+3\)\(⋮4\)
\(a\)chia \(7\)dư \(4\)\(\Rightarrow\)\(a+3\)\(⋮7\)
\(a\)chia \(9\)dư \(6\) \(\Rightarrow\)\(a+3\)\(⋮9\)
mà: \(\left(4,7,9\right)=1\)
suy ra: \(a+3\)\(⋮\)\(252\) \(\Rightarrow\)\(a+3\)\(\in B\left(252\right)\)
do \(a\)nhỏ nhất \(\Rightarrow\)\(a+3\)nhỏ nhất
\(\Rightarrow\)\(a+3=252\)\(\Rightarrow\)\(a=249\)
b) bạn làm tương tự nhé