Giúp tỚ vỚiiii <3 cảm ơn !!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6.
ĐKXĐ: \(x\ge1\)
\(\sqrt{x-1}\left(x^2-4x+1-m\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\f\left(x\right)=x^2-4x+1-m=0\left(1\right)\end{matrix}\right.\)
a.
Pt có 3 nghiệm pb khi và chỉ khi (1) có 2 nghiệm pb lớn hơn 1 hay \(1< x_1< x_2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=4-\left(1-m\right)>0\\f\left(1\right)>0\\\dfrac{x_1+x_2}{2}>1\\\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-3\\1-4+1-m>0\\\dfrac{4}{2}>1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-3\\m< -2\end{matrix}\right.\)
\(\Rightarrow-3< m< -2\)
b.
Pt có đúng 2 nghiệm pb khi (1) có 2 nghiệm pb thỏa mãn \(x_1< 1< x_2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=3+m>0\\f\left(1\right)=-2-m< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-3\\m>-2\end{matrix}\right.\)
\(\Rightarrow m>-2\)
7.
\(\sqrt{x^2-3x+m}=4-2x\)
\(\Leftrightarrow\left\{{}\begin{matrix}4-2x\ge0\\x^2-3x+m=\left(4-2x\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le2\\3x^2-13x+16-m=0\left(1\right)\end{matrix}\right.\)
a.
Pt có đúng 2 nghiệm pb khi (1) có 2 nghiệm pb thỏa mãn \(x_1< x_2\le2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=13^2-12\left(16-m\right)>0\\f\left(2\right)=2-m\ge0\\\dfrac{x_1+x_2}{2}=\dfrac{13}{6}\le2\left(ktm\right)\end{matrix}\right.\)
Vậy ko tồn tại m thỏa mãn yêu cầu
b.
Pt có nghiệm duy nhất khi (1) có nghiệm kép \(x=-\dfrac{b}{2a}=\dfrac{13}{6}< 2\) (ktm) hoặc có 2 nghiệm pb sao cho \(x_1\le2< x_2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=13^2-12\left(16-m\right)>0\\f\left(2\right)=2-m\le0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>\dfrac{23}{12}\\m\ge2\end{matrix}\right.\)
\(\Rightarrow m\ge2\)
\(c,=\dfrac{\left(x+2\right)\left(x+3\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{x+3}{x-2}\\ d,=\dfrac{\left(2-x-3\right)\left(2+x+3\right)}{\left(x+5\right)^2}=\dfrac{\left(x+5\right)\left(-x-1\right)}{\left(x+5\right)^2}=\dfrac{-x-1}{x+5}\)
\(b,\text{PT hoành độ giao điểm: }3x-1=x+2\\ \Leftrightarrow x=\dfrac{3}{2}\Leftrightarrow y=\dfrac{7}{2}\Leftrightarrow A\left(\dfrac{3}{2};\dfrac{7}{2}\right)\\ \text{Vậy }A\left(\dfrac{3}{2};\dfrac{7}{2}\right)\text{ là giao 2 đths}\\ c,\left(D_2\right)\text{//}\left(D\right);B\left(1;0\right)\in\left(D_2\right)\Leftrightarrow\left\{{}\begin{matrix}a+b=0\\a=3;b\ne-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=-3\end{matrix}\right.\\ \Leftrightarrow\left(D_2\right):y=3x-3\)
1) \(\left(x-3\right)\left(x-5\right)+2\)
\(=x^2-8x+15+2\)
\(=\left(x^2-8x+16\right)+1\)
\(=\left(x-4\right)^2+1\)
Vì \(\left(x-4\right)^2\ge0;\forall x\)
\(\Rightarrow\left(x-4\right)^2+1\ge1>0;\forall x\)
Vậy....
2) tương tự
\(1.\left(x-3\right)\left(x-5\right)+2\)
\(=x^2-8x+15+2\)
\(=x^2-2.4x+16+1\)
\(=\left(x-4\right)^2+1\)
Do \(\left(x-4\right)^2\ge0\)nên \(\left(x-4\right)^2+1\ge1\)
hay \(\left(x-3\right)\left(x-5\right)+2>0\)
Ta có: \(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
.....................
\(\frac{1}{2014^2}< \frac{1}{2013.2014}\)
\(\Rightarrow A< \frac{1}{2^2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\)
Đặt \(B=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}\)
\(=\frac{1}{2}-\frac{1}{2014}< \frac{1}{2}\)
\(\Rightarrow A< \frac{1}{2^2}+\frac{1}{2}=\frac{3}{4}\)
\(\text{Ta có: }n^2>n^2-1=\left(n-1\right)\left(n+1\right)\)
\(\Rightarrow\frac{1}{n^2}< \frac{1}{\left(n-1\right)\left(n+1\right)}=\frac{1}{2}\left(\frac{1}{n-1}-\frac{1}{n+1}\right)\)
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{2014^2}< \frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+...+\frac{1}{2013.2015}\)
\(=\frac{1}{2}\left(1-\frac{1}{3}\right)+\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}\right)+\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}\right)+...+\frac{1}{2}\left(\frac{1}{2013}-\frac{1}{2015}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2013}-\frac{1}{2015}\right)\)
\(=\frac{1}{2}\left(1+\frac{1}{2}-\frac{1}{2014}-\frac{1}{2015}\right)\)
\(=\frac{1}{2}\left(\frac{3}{2}-\frac{1}{2014}-\frac{1}{2015}\right)\)
\(=\frac{3}{4}-\frac{1}{2}\left(\frac{1}{2014}+\frac{1}{2015}\right)< \frac{3}{4}\)
Vậy .............