Chứng tỏ đa thức sau không có nghiệm :
a,\(P\left(x\right)=x^2+1\)
b,\(Q\left(y\right)=2y^4+5\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
\(A=x^2-2xy^2+y^4=\left(x-y^2\right)^2=-\left(y^2-x\right)^2\)
Mà \(B=-\left(y^2-x\right)^2\)
Nên ta có : đpcm
Bài 2
Đặt \(\left(x+1\right)\left(x-2\right)\left(2x-1\right)=0\)
TH1 : x = -1
TH2 : x = 2
TH3 : x = 1/2
Bài 4 :
a, \(\left(2x+3\right)\left(5-x\right)=0\Leftrightarrow x=-\frac{3}{2};5\)
b, \(\left(x-\frac{1}{2}\right)\left(3x+1\right)\left(2-x\right)=0\Leftrightarrow x=\frac{1}{2};-\frac{1}{3};2\)
c, \(x^2+2x=0\Leftrightarrow x\left(x+2\right)=0\Leftrightarrow x=0;-2\)
d, \(x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow x=0;1\)
a) Ta có: P(x) = 3y + 6 có nghiệm khi
3y + 6 = 0
3y = -6
y = -2
Vậy đa thức P(y) có nghiệm là y = -2.
b) Q(y) = y4 + 2
Ta có: y4 có giá trị lớn hơn hoặc bằng 0 với mọi y
Nên y4 + 2 có giá trị lớn hơn 0 với mọi y
Tức là Q(y) ≠ 0 với mọi y
Vậy Q(y) không có nghiệm.
+) P (y) = 3y+ 6 có nghiệm nếu : 3y+ 6= 0
=> 3y= 0- 6
=> 3y= -6
=> y= -2
Vậy đa thức P(y) có nghiệm: y= -2
+ ) Q( y)= y4 + 2 nếu có nghiệm thì: y4 +2= 0
=> y4= -2
=> Q( y) = y4 +2 k có nghiệm.
a,ta có \(G\left(y\right)=-\left(y+2\right)^2\)
có nghiệm là -2
b,ta có:
Câu a làm giống bạn kia đc rồi
b, Dễ thấy H(x) > 0 nên pt éo có nghiệm =((
Lục đục nãy giờ mới thấy :/
\(Q\left(x\right)=-3x^4+4x^3+2x^2+\dfrac{2}{3}-3x-2x^4-4x^3+8x^4+1+3x\)
\(=\left(-3x^4-2x^4+8x^4\right)+\left(4x^3-4x^3\right)+2x^2-\left(3x-3x\right)+\left(1+\dfrac{2}{3}\right)\)
\(=3x^4+2x^2+\dfrac{5}{3}\)
\(3x^4+2x^2+\dfrac{5}{3}=0\)
\(\Rightarrow3x^4+2x^2=-\dfrac{5}{3}\)(Vô lí vì \(3x^4\) và \(2x^2\) luôn lớn hơn hoặc bằng 0)
Vậy Q(x) không có nghiệm
Q(x)=3x^4+2x^2+5/3>=5/3>0 với mọi x
=>Q(x) vô nghiệm
bạn trả lời vs thầy là :
" bài này nhìn qua cx biết nó > 0 oy, nên vô nghiệm "
chỉ có những thằng thiểu năng mới hỏi câu kiểu này
a, \(x^2+1\)
Có \(x^2\ge0\forall x\)=>x^2+1 >0
vậy đa thức vô nghiệm
b,(2x+1)^2+3
có (2x+1)^2\(\ge\)0 với mọi x
=>(2x+1)^2+3>0
=>đa thức này không có nghiệm
Bài 1:
a)2x-6
Ta có:2x-6=0
2x=6
=>x=3
Vậy x=3 là nghiệm của đa thức a)
b)(6-x)(4-2x)
Ta có:(6-x)(4-2x)=0
Th1:6-x=0 =>x=6
Th2:4-2x=0
2x=4 =>x=2
Vậy x=2 và 6 là nghiệm của đa thức b)
c)x2+x
Ta có:x2+x=0
x(x+1)=0
TH1:x=0
TH2:x+1=0 =>x=-1
Vậy x=0 và -1 là nghiệm của đa thức c)
d)x2-81
Ta có:x2-81=0
x2=81
=>x=+_ 9
Vậy x=+_ 9 là nghiệm của đa thức d)
e)(2-x)(x2+1)
Ta có:(2-x)(x2+1)=0
TH1:2-x=0 =>x=2
TH2:x2+1=0
x2=-1 (loại)
Vậy x=2 là nghiệm đa thức e)
Bài 2:
P(x)=-2-3x2
Ta có:
-3x2≤0 với mọi x
=>-2-3x2<-2 với mọi x
Vậy đa thức P(x) vô nghiệm
Q(y)=y2+\(\dfrac{1}{4}\)y4+\(\dfrac{1}{4}\)
Ta có:
y2≥0 với mọi y
y4≥0 với mọi y
=>\(\dfrac{1}{4}\)y4≥0 với mọi y
=>y2+\(\dfrac{1}{4}\)y4≥0 với mọi y
=>y2+\(\dfrac{1}{4}\)y4+\(\dfrac{1}{4}\)≥\(\dfrac{1}{4}\)>0 với mọi y
Vậy đa thức Q(y) vô nghiệm
a) Ta có: P(x) = 3y + 6 có nghiệm khi
3y + 6 = 0
3y = -6
y = -2
Vậy đa thức P(y) có nghiệm là y = -2.
b) Q(y) = y4 + 2
Ta có: y4 có giá trị lớn hơn hoặc bằng 0 với mọi y
Nên y4 + 2 có giá trị lớn hơn 0 với mọi y
Tức là Q(y) ≠ 0 với mọi y
Vậy Q(y) không có nghiệm.
b)\(B\left(x\right)=P\left(x\right)+Q\left(x\right)\)
\(B\left(x\right)=x^3+4x^3+3x-6x-4-x^2-x^3-x^2+3x+8\)
\(B\left(x\right)=4x^3-2x^2+4\)
a. Ta có: \(x^2\ge0\) với mọi \(x\in R\)
\(\Rightarrow x^2+1>0\)
Suy ra: \(P\left(x\right)=x^2+1\) không có nghiệm
b. Ta có: \(y^4\ge0\) với mọi \(y\in R\)
\(\Rightarrow2y^4\ge0\)
\(\Rightarrow2y^4+5>0\)
Suy ra \(Q\left(y\right)=2y^4+5\) không có nghiệm
a) Ta có:
\(x^2\ge0\) (1)
\(1>0\) (2)
Từ (1) và (2) \(\Rightarrow x^2+1>0\Rightarrow x^2+1\ne0\)
Vậy đa thức P(x) = x2 + 1 vô nghiệm
b) Ta có:
\(y^4\ge0\Rightarrow2y^4\ge0\) (1)
\(5>0\) (2)
Từ (1) và (2) \(\Rightarrow2y^4+5>0\Rightarrow2y^4+5\ne0\)
Vậy đa thức Q(y) = 2y4 + 5 vô nghiệm