Giải các phương trình :
a) \(1+\sin x-\cos x=0\)
b) \(\cos^4x+\sin^4x=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sin 2x + 1 - 2{\sin ^2}2x = 0\;\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\sin 2x = 1}\\{\sin 2x = - \frac{1}{2}}\end{array}\;\;\;} \right. \Leftrightarrow \;\left[ {\begin{array}{*{20}{c}}{\sin 2x = \sin \frac{\pi }{2}}\\{\sin 2x = \sin - \frac{\pi }{6}}\end{array}} \right.\;\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{2x = \frac{\pi }{2} + k2\pi }\\{2x = - \frac{\pi }{6} + k2\pi }\\{2x = \pi + \frac{\pi }{6} + k2\pi }\end{array}} \right.\;\;\)
\( \Leftrightarrow \;\left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{4} + k2\pi }\\{x = - \frac{\pi }{{12}} + k\pi }\\{x = \frac{{7\pi }}{{12}} + k\pi }\end{array}} \right.\;\;\left( {k \in \mathbb{Z}} \right)\)
b) \(\cos 3x = - \cos 7x\; \Leftrightarrow \cos 3x + \cos 7x = 0\;\; \Leftrightarrow 2\cos 5x\cos 2x = 0\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\cos 5x = 0}\\{\cos 2x = 0\;}\end{array}} \right.\;\;\)
\( \Leftrightarrow \left[ \begin{array}{l}\cos 5x = \cos \frac{\pi }{2}\\\cos 2x = \cos \frac{\pi }{2}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}5x = \frac{\pi }{2} + k2\pi \\5x = - \frac{\pi }{2} + k2\pi \\2x = \frac{\pi }{2} + k2\pi \\2x = - \frac{\pi }{2} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{{10}} + \frac{{k2\pi }}{5}\\x = - \frac{\pi }{{10}} + \frac{{k2\pi }}{5}\\x = \frac{\pi }{4} + k\pi \\x = - \frac{\pi }{4} + k\pi \end{array} \right.;k \in Z\)
a) \(\left(sinx+cosx\right)^2=sin^2x+2sinxcosx+cos^2x\)\(=1+2sinxcosx\).
b) \(\left(sinx-cosx\right)^2=sin^2x-2sinxcosx+cos^2x\)\(=1-2sinxcosx\).
c) \(sin^4x+cos^4x=\left(sin^2x+cos^2x\right)^2-2sin^2xcos^2x\)
\(=1-2sin^2xcos^2x\).
6.
\(\Leftrightarrow\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)+\frac{1}{2}sinx.cosx=0\)
\(\Leftrightarrow1-3sin^2x.cos^2x+\frac{1}{2}sinx.cosx=0\)
\(\Leftrightarrow1-\frac{3}{4}sin^22x+\frac{1}{4}sin2x=0\)
\(\Leftrightarrow-3sin^22x+sin2x+4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=-1\\sin2x=\frac{4}{3}>1\left(l\right)\end{matrix}\right.\)
\(\Rightarrow2x=-\frac{\pi}{2}+k2\pi\)
\(\Rightarrow x=-\frac{\pi}{4}+k\pi\)
5.
\(\Leftrightarrow\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)=\frac{5}{6}\left[\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x\right]\)
\(\Leftrightarrow1-3sin^2x.cos^2x=\frac{5}{6}\left(1-2sin^2x.cos^2x\right)\)
\(\Leftrightarrow1-\frac{3}{4}sin^22x=\frac{5}{6}\left(1-\frac{1}{2}sin^22x\right)\)
\(\Leftrightarrow\frac{1}{3}sin^22x=\frac{1}{6}\)
\(\Leftrightarrow sin^22x=\frac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=\frac{\sqrt{2}}{2}\\sin2x=-\frac{\sqrt{2}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{8}+k\pi\\x=\frac{3\pi}{8}+k\pi\\x=-\frac{\pi}{8}+k\pi\\x=\frac{5\pi}{8}+k\pi\end{matrix}\right.\)
\(sinx+cosx=m\Leftrightarrow\left(sinx+cosx\right)^2=m^2\)
\(\Leftrightarrow1+2sinx.cosx=m^2\Rightarrow sinx.cosx=\dfrac{m^2-1}{2}\)
\(A=sin^2x+cos^2x=1\)
\(B=sin^3x+cos^3x=\left(sinx+cosx\right)^3-3sinx.cosx\left(sinx+cosx\right)\)
\(=m^3-\dfrac{3m\left(m^2-1\right)}{2}=\dfrac{2m^3-3m^3+3m}{2}=\dfrac{3m-m^3}{2}\)
\(C=\left(sin^2+cos^2x\right)^2-2\left(sinx.cosx\right)^2=1-2\left(\dfrac{m^2-1}{2}\right)^2\)
\(D=\left(sin^2x\right)^3+\left(cos^2x\right)^3=\left(sin^2x+cos^2x\right)^3-3\left(sin^2x+cos^2x\right)\left(sinx.cosx\right)^2\)
\(=1-3\left(\dfrac{m^2-1}{2}\right)^2\)
a)\(\Leftrightarrow1+\sin x-\sqrt{1-\sin^2x}=0\)
\(\Leftrightarrow1+\sin^2x+2\sin x=1-\sin^2x\)
\(\Leftrightarrow\sin^2x+\sin x=0\)
\(\Rightarrow\left[{}\begin{matrix}\sin x=0\\\sin x=-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=k.\pi\left(k\in Z\right)\\x=-\frac{\pi}{2}+k.2\pi\left(k\in Z\right)\end{matrix}\right.\)
Vậy...
b)\(\Leftrightarrow\cos^2x-\sin^2x=1\)
\(\Leftrightarrow\cos^2x-\left(1-\cos^2x\right)=1\)
\(\Leftrightarrow\cos^2x=1\)
\(\Rightarrow\left[{}\begin{matrix}x=k.2\pi\\x=\pi+k.2\pi\end{matrix}\right.\)
Vậy ....
#Walker