K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2017

Áp dụng BĐT AM-GM ta có:

\(\dfrac{a^3}{b\left(c+1\right)}+\dfrac{c+1}{4}+\dfrac{b}{2}\ge3\sqrt[3]{\dfrac{a^3}{b\left(c+1\right)}\cdot\dfrac{c+1}{4}\cdot\dfrac{b}{2}}\)

\(=3\sqrt[3]{\dfrac{a^3}{4\cdot2}\cdot\dfrac{c+1}{c+1}\cdot\dfrac{b}{b}}=3\sqrt[3]{\dfrac{a^3}{8}}=\dfrac{3a}{2}\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\dfrac{b^3}{c\left(a+1\right)}\ge\dfrac{3b}{2};\dfrac{c^3}{a\left(b+1\right)}\ge\dfrac{3c}{2}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT+\dfrac{a+b+c+3}{4}+\dfrac{a+b+c}{2}\ge\dfrac{3a+3b+3c}{2}\)

\(\Leftrightarrow VT+\dfrac{3\left(a+b+c\right)}{4}+\dfrac{3}{4}\ge\dfrac{3\left(a+b+c\right)}{2}\)

\(\Leftrightarrow VT+\dfrac{3}{4}\ge\dfrac{3\left(a+b+c\right)}{4}\). Mà theo AM-GM ta có:

\(a+b+c\ge3\sqrt[3]{abc}=3\)\(\Rightarrow VT+\dfrac{3}{4}\ge\dfrac{9}{4}\Rightarrow VT\ge\dfrac{3}{2}=VP\)

Đẳng thức xảy ra khi \(a=b=c=1\)

NV
10 tháng 6 2021

Bài này đã có ở đây:

Cho abc=1CMR\(\dfrac{a+3}{\left(a+1\right)^2}+\dfrac{b+3}{\left(b+1\right)^2}+\dfrac{c+3}{\left(c+1\right)^2}\ge3\) - Hoc24

NV
18 tháng 1 2022

\(\Leftrightarrow\left(1+abc\right)\left(\dfrac{1}{a\left(1+b\right)}+\dfrac{1}{b\left(1+c\right)}+\dfrac{1}{c\left(1+a\right)}\right)\ge3\)

Ta có:

\(\left(1+abc\right).\dfrac{1}{a\left(1+b\right)}=\dfrac{1+abc}{a+ab}=\dfrac{1+a+ab+abc-a-ab}{a+ab}=\dfrac{1+a}{a\left(1+b\right)}+\dfrac{b\left(1+c\right)}{1+b}-1\)

\(\Rightarrow VT=\dfrac{1+a}{a\left(1+b\right)}+\dfrac{b\left(1+c\right)}{1+b}+\dfrac{1+b}{b\left(1+c\right)}+\dfrac{c\left(1+a\right)}{1+c}+\dfrac{1+c}{c\left(1+a\right)}+\dfrac{a\left(1+b\right)}{1+a}-3\)

\(VT\ge6\sqrt[6]{\dfrac{abc\left(1+a\right)^2\left(1+b\right)^2\left(1+c\right)^2}{abc\left(1+a\right)^2\left(1+b\right)^2\left(1+c\right)^2}}-3=3\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

AH
Akai Haruma
Giáo viên
29 tháng 9 2017

Lời giải:

Áp dụng hệ quả của BĐT AM-GM:

\(\text{VT}^2=\left[\frac{1}{a(a+1)}+\frac{1}{b(b+1)}+\frac{1}{c(c+1)}\right]^2\geq 3\left(\frac{1}{ab(a+1)(b+1)}+\frac{1}{bc(b+1)(c+1)}+\frac{1}{ca(a+1)(c+1)}\right)\)

\(\Leftrightarrow \text{VT}^2\geq 3.\frac{a^2+b^2+c^2+a+b+c}{abc(a+1)(b+1)(c+1)}\geq 3.\frac{a+b+c+ab+bc+ac}{abc(a+1)(b+1)(c+1)}\)

\(\Leftrightarrow \text{VT}^2\geq \frac{3}{abc}-\frac{3(abc+1)}{abc(a+1)(b+1)(c+1)}\) \((1)\)

Ta sẽ cm \((a+1)(b+1)(c+1)\geq (1+\sqrt[3]{abc})^3\). Thật vậy:

Áp dụng BĐT AM-GM:

\(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\geq 3\sqrt[3]{\frac{abc}{(a+1)(b+1)(c+1)}}\)

\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\geq 3\sqrt[3]{\frac{1}{(a+1)(b+1)(c+1)}}\)

Cộng theo vế: \(\Rightarrow 3\geq \frac{3(\sqrt[3]{abc}+1)}{\sqrt[3]{(a+1)(b+1)(c+1)}}\)

\(\Rightarrow (a+1)(b+1)(c+1)\geq (\sqrt[3]{abc}+1)^3\) (2)

Từ \((1),(2)\Rightarrow \text{VT}^2\geq \frac{3}{abc}-\frac{3(abc+1)}{abc(1+\sqrt[3]{abc})^3}=\frac{9}{\sqrt[3]{a^2b^2c^2}(1+\sqrt[3]{abc})^2}=\text{VP}^2\)

\(\Leftrightarrow \text{VT}\geq \text{VP}\) (đpcm)

Dấu bằng xảy ra khi \(a=b=c=1\)

28 tháng 9 2017

ap dung bdt holder

3 tháng 1 2019

3/ Áp dụng bất đẳng thức AM-GM, ta có :

\(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}\ge2\sqrt{\dfrac{\left(ab\right)^2}{\left(bc\right)^2}}=\dfrac{2a}{c}\)

\(\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge2\sqrt{\dfrac{\left(bc\right)^2}{\left(ac\right)^2}}=\dfrac{2b}{a}\)

\(\dfrac{c^2}{a^2}+\dfrac{a^2}{b^2}\ge2\sqrt{\dfrac{\left(ac\right)^2}{\left(ab\right)^2}}=\dfrac{2c}{b}\)

Cộng 3 vế của BĐT trên ta có :

\(2\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)\ge2\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\)

\(\Leftrightarrow\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\left(\text{đpcm}\right)\)

AH
Akai Haruma
Giáo viên
4 tháng 1 2019

Bài 1:

Áp dụng BĐT AM-GM ta có:

\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{1}{2\sqrt{a^2.bc}}+\frac{1}{2\sqrt{b^2.ac}}+\frac{1}{2\sqrt{c^2.ab}}=\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ac}}{2abc}\)

Tiếp tục áp dụng BĐT AM-GM:

\(\sqrt{bc}+\sqrt{ac}+\sqrt{ab}\leq \frac{b+c}{2}+\frac{c+a}{2}+\frac{a+b}{2}=a+b+c\)

Do đó:

\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\leq \frac{a+b+c}{2abc}\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$

13 tháng 2 2019

Áp dụng BĐT AM - GM ta có:

$ \frac{a^3}{(1 + b)(1 + c)} + \frac{1 + b}{8} + \frac{1 + c}{8} \geq \frac{3}{4}a$

$\frac{b^3}{(1 + c)(1 + a)} + \frac{1 + c}{8} + \frac{1 + a}{8} \geq \frac{3}{4}b$

$\frac{c^3}{(1 + a)(1 + b)} + \frac{1 + a}{8} + \frac{1 + b}{8} \geq \frac{3}{4}c $

Cộng vế theo vế ta được:

$ P + \frac{2(a + b + c) + 6}{8} \geq \frac{3}{4}(a + b + c) $

$<=> P \geq \frac{1}{2}(a + b + c) - \frac{3}{4}$

$=> P \geq \frac{3}{4} (dpcm)$

28 tháng 6 2021

hmmm-khó đấy

 

NV
28 tháng 6 2021

Đề bài hình như bị sai em, thay điểm rơi ko thỏa mãn

Biểu thức là \(a+b+\sqrt{2\left(a+c\right)}\) mới đúng