Tính: \(N=2003\left(2004^9+2004^8+..+2004^2+2005\right)+1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
N=2003(2004(9+8+7+...+2)+2015)+1
Dat A=9+8+7+...+2
A có số số hạng là (9-2)*1+1=8 so hang
A=(9+2)*8/2=44
N=2003(2004*44+2005)+1
N=2003*(88176+2005)+1
N=2003*90181+1=180632543+1=180632544
số to quá
DUYỆT NHA
a) 1-2-3+4+5-6-7+8+...+2001-2002-2003+2004
S = (1+2-3+4) + (5+6-7-8) + ... + (2001+2002-2003-2004) + (2005+2006)
S = (-4) + (-4) + ... + (-4) + (2005+2006)
dãy S có 2004 - 1 : 1 + 1 = 2004 số hạng
dãy S có 2004 : 4 = 501 chữ số (-4)
do đó S = -4. 501 = -2004
S = -2004 + (2005+2006)
S = -2004 + 4011
S = 2007
b) tương tự nhé!!
675676587689689
a) Nhóm 4 số hạng liên tiếp từ đầu dãy:
A = (1-2-3+4)+(5-6-7+8)+(9-10-11+12)+ ...+(2001-2002-2003+2004) = 0
b) Nhóm 4 số hạng liên tiếp bắt đầu từ số thứ 2:
B = 1+(2-3-4+5)+(6-7-8+9)+...+(2002-2003-2004+2005)+2006 = 1+2006 = 2007.
Ta có : \(N=2003.(2004^{9}+2004^{8}+...+2004^{2}+2005\))+1
\(N=(2004-1)(2004^{9}+2004^{8}+...+2004^{2}+2004+1)+1\)
\(N=[2004(2004^{9}+2004^{8}+...+2004^{2}+2004+1)-(2004^{9}+2004^{8}+...+2004^{2}+2004+1)]+1\)
\(N=[(2004^{10}+2004^{9}+...+2004^{3}+2004^{2}+2004)-(2004^{9}+2004^{8}+...+2004^{2}+2004+1)]+1\)\(N=2004^{10}+2004^9+...+2004^3+2004^2+2004-2004^9-2004^8-...-2004^2-2004-1+1\)\(N=2004^{10}\)