Bai 1: Qua đỉnh A của hình vuông ABCD cạnh a. Vẽ 1 đường thẳng cắt cạnh BC ở M, cắt đường thẳng DC tại I
CMR:\(\frac{1}{AM^2}+\frac{1}{AI^2}=\frac{1}{a^2}\)
Bai 2:
a) Tìm GTNN của biểu thức A=\(\frac{3x^2-8x+6}{x^2-2x+1}\)
b)CMR:với mọi a,b,c \(\in\) R ta có: \(a^2+b^2+c^2\ge ab+ac+bc\)
Bài 1:
trên Cd lấy E sao cho AE = AM
bạn sẽ dễ dàng chứng minh tam giác EAD và tam giác MAB bằng nhau theo trường hợp cạnh huyền cạnh góc vuông.
suy ra góc EAD = góc BAM. mà góc BAM + góc DAM = 90 độ => góc EAD + góc DAM = góc EAI = 90 độ suy ra tam giác EAI vuông tại A.
từ đó bạn sẽ dễ dàng chứng minh được 1/AE^2 + 1/ AI^2 = 1/AD^2 (theo hệ thức cạnh và đường cao trong tam giác vuông) => hay 1/AM^2 + 1/AI^2 = 1/a^2 (đpcm) :D
bài 2 :
câu a nè
A = (3x^2 - 8x + 6)/(x^2 -2x + 1)
hay Ax^2 - 2Ax + A = 3x^2 - 8x + 6.
=3x^2 - 8x + 6 - Ax^2 + 2Ax -A
= x^2(3 - A) + 2x(A-4) + 6 - A.
delta' = b'^2 - ac = (A-4)^2 - (3-A)(6-A)
= A^2 - 8A + 16 - 18 + 3A + 6A - A^2
= A -2.
để phương trình có nghiệm <=> delta' >= 0 <=> A-2 >= 0 <=> A >= 2.
vật giá trị nhỏ nhất của A = 2
thay A = 2 vào biểu thức A ta sẽ có 2 = (3x^2 - 8x + 6)/(x^2 - 2x +1) từ đó giải được x = ? để min A = 2 :D
b) bạn luôn có a^2 + b^2 >= 2ab
b^2 + c^2 >= 2bc
a^2 + c^2 >= 2ac
cộng 3 vế bđt bạn sẽ có 2a^2 + 2b^2 + 2c^2 >= 2ab + 2bc + 2ac
hay a^2 + b^2 + c^2 >= ab + ac + bc (đpcm)
chúc bạn học tốt :D
=