Cho f(x)=ax\(^2\)+bx+c. Biết f(0),f(1),f(2)là số nguyên. Chứng minh rằng: f(x) luôn nhận giá trị nguyên với mọi x.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có f(0)=a.02+b.0+c=c
=> c là số nguyên
f(1)=a.12+b.1+c=a+b+c=(a+b)+c
Vì c là số nguyên nên a+b là số nguyên (1)
f(2)=a.22+b.2+c=2(2a+b)+c
=>2.(2a+b) là số nguyên
=> 2a+b là số nguyên (2)
Từ (1) và (2) =>(2a+b)-(a+b) là số nguyên =>a là số nguyên => b cũng là số nguyên
Vậy f(x) luôn nhân giá trị nguyên với mọi x
Ta có f(0)=a.0\(^2\)+b.0+c=c=>c là số nguyên
f(1)=a.1\(^{^2}\)+b.1+c=a+b+c
Vì c là số nguyên=>a+b là số nguyên(1)
f(2)=a.2\(^2\)+b.2+c=2.(2a+b)+c=>2.(2a+b)là số nguyên=>2a+b là số nguyên(2)
Từ (1)và(2)=>(2a+b)-(a+b)=2a+b-a-b=a là số nguyên=>a là số nguyên
Do a+b là số nguyên, mà a là số nguyên
=>b là số nguyên
Vậy f(x) luôn nhận giá trị nguyên với mọi x
Ta có f(0)=a.0
2
+b.0+c=c=>c là số nguyên
f(1)=a.1
2
+b.1+c=a+b+c
Vì c là số nguyên=>a+b là số nguyên(1)
f(2)=a.2
2
+b.2+c=2.(2a+b)+c=>2.(2a+b)là số nguyên=>2a+b là số nguyên(2)
Từ (1)và(2)=>(2a+b)-(a+b)=2a+b-a-b=a là số nguyên=>a là số nguyên
Do a+b là số nguyên, mà a là số nguyên
=>b là số nguyên
Vậy f(x) luôn nhận giá trị nguyên với mọi x
f(x)=ax2+bx+cf(x)=ax2+bx+c
f(0)=a.02+b.0+c=cf(0)=a.02+b.0+c=c
⇒⇒ c là số nguyên
f(1)=a.12+b.1+c=a+b+cf(1)=a.12+b.1+c=a+b+c
Vì c là số nguyên nên a + b là số nguyên (1)
f(2)=a.22+b.2+c=2(2a+b)+cf(2)=a.22+b.2+c=2(2a+b)+c
Vì c là số nguyên nên 2(2a + b) là số nguyên
⇒⇒ 2a + b là số nguyên (2)
Từ (1) và (2) ⇒⇒ (2a + b) - (a + b) là số nguyên ⇒⇒ a là số nguyên
⇒⇒ b là số nguyên
Vậy f(x) luôn nhận giá trị nguyên với mọi x nguyên.
#ks+Kbn= Add
#Uyên_Ami_BTS >,<
#Taehyung_stan
Ta có f(0) = a.02 + b.0+c =c
=> c là số nguyên
f(1) = a.12+ b.1+c=a +b + c = (a+)b+c
Vi c là số nguyên nên a+b là số nguyên (1)
f(2) = a.22+ b.2+c=2(2a+b)+c
=> 2(2a+b) là số nguyên
=>2a +b là số nguyên (2)
Từ (1) và (2)
=>(2a +b)-(à+b) là số nguyên => a là số nguyên =>b là số nguyên
=>f(x) luôn nhận giá trị nguyên với mọi x nguyên.
Ta có: \(f\left(x\right)=ax^2+bx+c\)
\(\Rightarrow f\left(0\right)=a0^2+0b+c\in Z\)
\(\Rightarrow c\in Z\)
\(f\left(1\right)=a1^2+1b+c=a+b+c\in Z\)
Mà \(c\in Z\Rightarrow a+b\in Z\left(1\right)\)
\(f\left(2\right)=a2^2+2b+c=4a+2b+c=2\left(2a+b\right)+c\in Z\)
Vì \(c\in Z\Rightarrow2\left(2a+b\right)\in Z\)
\(\Rightarrow2a+b\in Z\left(2\right)\)
Từ (1) và (2) suy ra: \(\left(2a+b\right)-\left(a+b\right)\in Z\)
\(\Rightarrow2a+b-a-b\in Z\)
\(\Rightarrow a\in Z\)
Từ (1) suy ra \(b\in Z\)
Vậy f(x) luôn nhận giá trị nguyên với mọi x nguyên
có gì ko hiểu thì cứ hỏi tự nhiên ạ~
\(f\left(x\right)=ax^2+bx+c\left(1\right)\)
\(\Rightarrow f\left(0\right)=c\in Z\)( vì \(f\left(0\right)\in Z\))
\(\Rightarrow f\left(1\right)=a+b+c\left(4\right)\)Mà \(f\left(1\right)\in Z\)
\(\Rightarrow a+b+c\in Z\)mà \(c\in Z\)
\(\Rightarrow a+b\in Z\Rightarrow2a+2b\in Z\left(2\right)\)
Từ (1) \(\Rightarrow f\left(2\right)=4a+2b+c\in Z\)(vì \(f\left(2\right)\in Z\))
Mà \(c\in Z\)
\(\Rightarrow4a+2b\in Z\left(3\right)\)
Từ (2) và (3)\(\Rightarrow2a\in Z\Rightarrow a\in Z\)
Từ (4) kết hợp a,c \(\in Z\Rightarrow b\in Z\)
\(\Rightarrow f\left(x\right)\)luôn nhân giá trị nguyên với mọi x nguyên
\(f\left(0\right)=a.0^2+b.0+c=c\) có giá trị nguyên
\(f\left(1\right)=a+b+c\) có giá trị nguyên => a + b có giá trị nguyên
\(f\left(2\right)=4a+2b+c=2a+2\left(a+b\right)+c\)=> 2a có giá trị nguyên
=> 4a có giá trị nguyên
=> 2b có giá trị nguyên.
Bạn tham khảo lời giải tại đây:
CHO ĐA thức f(x)=\(ax^3 bx^2 cx d\). Chứng minh rằng nếu f(X) nhận giá tri nguyên vs mọi giá trị nguyên của x thì d,2b,6... - Hoc24