Giúp mình nhanh câu này được không ??? Chứng minh rằng :
b, (134^345 - 101^98 ) chia hết cho 5
a, (59^1987 + 21^1988) chia hết cho 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bầi 2:
a: A=x+54
Để A chia hết cho 2 thì x chia hết cho 2
b: Để A chia hết cho 3 thì x chia hết cho 3
Ta có:
a) a+3b=(a+b)+2b
Vì a+b chia hết cho 2 và 2b chia hết cho 2 =>a+3b chia hết cho 2
b) 5a+11b=(4a+10b)+(a+b)=2(2a+5b)+(a+b)
Vì 2(2a+5b) chia hết cho 2 và a+b chia hết cho 2 => 5a+11b chia hết cho 2
\(43^{101}+23^{101}=43\cdot43^{100}+23\cdot23^{100}=\left(66-23\right)\cdot43^{100}+23\cdot23^{100}\)
\(=66\cdot43^{100}-23\cdot43^{100}+23\cdot23^{100}=66\cdot43^{100}-23\left(43^{100}-23^{100}\right)\)
\(=66\cdot43^{100}-23\left(43-23\right)\left(43^{99}+43^{98}\cdot23+43^{97}\cdot23^2+43^{96}\cdot23^3+...+43\cdot23^{98}+23^{99}\right)\)
\(=66\cdot43^{100}-23\cdot20\left(43^{98}\left(43+23\right)+43^{96}\cdot23^2\left(43+23\right)+...+23^{98}\left(43+23\right)\right)\)
\(=66\cdot43^{100}-460\left(4^{98}\cdot66+4^{96}\cdot23^2\cdot66+...+23^{98}\cdot66\right)\)
\(=66\cdot43^{100}-460\cdot66\left(4^{98}+4^{96}\cdot23^2+...+23^{98}\right)\)
\(=66\left(43^{100}-460\left(4^{98}+4^{96}\cdot23^2+...+23^{98}\right)\right)⋮66\Rightarrow43^{100}+23^{100}⋮66\)(đpcm)
cái chỗ \(43^{100}-23^{100}=\left(43-23\right)\left(43^{99}+43^{98}\cdot23+43^{97}\cdot23^2+43^{96}\cdot23^3+...+43\cdot23^{98}+23^{99}\right)\)
là áp dụng hđt \(a^n-b^n=\left(a-b\right)\left(a^{n-1}+a^{n-2}b+a^{n-3}b^2+a^{n-4}b^3+...+b^{n-1}\right)\)
a, n(n+1)(n+2)
nhận xét :
n; n+1; n+2 là 3 số tự nhiên liên tiếp
=> có 1 số chia hết cho 2 và có 1 số chia hết cho 3 (1)
ƯCLN(2;3) = 1 (2)
(1)(2) => n(n+1)(n+2) \(⋮\) 6
b, 3a + 5b \(⋮\) 8
=> 5(3a + 5b) \(⋮\) 8
=> 15a + 25b \(⋮\) 8
3(5a + 3b) = 15a + 9b
xét hiệu :
(15a + 25b) - (15a + 9b)
= 15a + 25b - 15a - 9b
= (15a - 15a) + (25b - 9b)
= 0 + 16b
= 16b và (3;5) = 1
=> 5a + 3b \(⋮\) 8
c, làm tương tự câu b