K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đề bài sai, biểu thức này chỉ có Min, không có Max.

undefined

Ta có: \(25x^2+x+25\)

\(=\left(5x\right)^2+2\cdot5x\cdot\dfrac{1}{10}+\dfrac{1}{100}+\dfrac{2499}{100}\)

\(=\left(5x+\dfrac{1}{10}\right)^2+\dfrac{2499}{100}\ge\dfrac{2499}{100}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{1}{50}\)

21 tháng 10 2016

A=...

dăt 5x=y viet cho gon

x=y/5

-A=y^2-y/5+3

=(y-1/10)^2+3-1/100

A=-(y-1/10)^2-299/100

GTLN=-299/100 khi y=1/10 

15 tháng 11 2021

 ??? ??????????…………………………???!!

15 tháng 11 2021

Mặt phẳng (P)(P) có VTPT −→nP=(1;2;−3)nP→=(1;2;−3); dd có VTCP →ud=(1;1;−1)ud→=(1;1;−1).

Gọi A=d∩(P)A=d∩(P), tọa độ điểm AA thỏa mãn hệ ⎧⎨⎩x+21=y−21=z−1x+2y−3z+4=0⇒A(−3;1;1){x+21=y−21=z−1x+2y−3z+4=0⇒A(−3;1;1).

Do ΔΔ nằm trong (P)(P) và vuông góc với dd nên có VTCP −→uΔ=[−→nP,→ud]=(1;−2;−1)uΔ→=[nP→,ud→]=(1;−2;−1).

Khi đó đường thẳng ΔΔ được xác định là đi qua A(−3;1;1)A(−3;1;1) và có VTCP  −→uΔ=[−→nP,→ud]=(1;−2;−1)uΔ→=[nP→,ud→]=(1;−2;−1) nên có phương trình Δ:x+31=y−1−2=z−1−1Δ:x+31=y−1−2=z−1−1.

5 tháng 8 2018

Đặt  \(A=x^2-3x\)

\(A=\left(x^2-3x+\frac{9}{4}\right)-\frac{9}{4}\)

\(A=\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\)

Mà  \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow A\ge-\frac{9}{4}\)

Dấu "=" xảy ra khi :  \(x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)

Vậy  \(A_{Min}=-\frac{9}{4}\Leftrightarrow x=\frac{3}{2}\)

Đặt  \(B=-x^2-2x\)

\(-B=x^2+2x\)

\(-B=\left(x^2+2x+1\right)-1\)

\(-B=\left(x+1\right)^2-1\)

Mà  \(\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow-B\ge-1\Leftrightarrow B\le1\)

Dấu "=" xảy ra khi :  \(x+1=0\Leftrightarrow x=-1\)

Vậy  \(B_{Max}=1\Leftrightarrow x=-1\)

AH
Akai Haruma
Giáo viên
16 tháng 8 2021

Lời giải:

Ta có:

$x^2-3x+11=(x-\frac{3}{2})^2+\frac{35}{4}\geq \frac{35]{4}$

$\Rightarrow \frac{31}{x^2-3x+11}\leq 31:\frac{35}{4}=\frac{124}{35}$

$\Rightarrow \frac{31}{x^2-3x+11}+15\leq \frac{649}{35}$

Vậy gtln của biểu thức là $\frac{649}{35}$ khi $x=\frac{3}{2}$

24 tháng 7 2018

\(N=x-x^2\)

\(N=-x^2+x\)

Có \(-x^2\le0\)

\(\Rightarrow N\le0+x=x\)

Dấu "=" xảy ra khi x = 0

Vậy Min N = 0+0=0 <=> x = 0

24 tháng 7 2018

=x2-2.x.1/2+(1/2)^2-1/4

=(x-1/2)^2-1/4

Vì (x-1/2)^2- 1/4>= -1/4

nên GTNN CỦA A= -1/4 KHI : x=1/2