Tìm giá trị lớn nhất của đa thức sau
\(x+25x^2+25\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=...
dăt 5x=y viet cho gon
x=y/5
-A=y^2-y/5+3
=(y-1/10)^2+3-1/100
A=-(y-1/10)^2-299/100
GTLN=-299/100 khi y=1/10
Mặt phẳng (P)(P) có VTPT −→nP=(1;2;−3)nP→=(1;2;−3); dd có VTCP →ud=(1;1;−1)ud→=(1;1;−1).
Gọi A=d∩(P)A=d∩(P), tọa độ điểm AA thỏa mãn hệ ⎧⎨⎩x+21=y−21=z−1x+2y−3z+4=0⇒A(−3;1;1){x+21=y−21=z−1x+2y−3z+4=0⇒A(−3;1;1).
Do ΔΔ nằm trong (P)(P) và vuông góc với dd nên có VTCP −→uΔ=[−→nP,→ud]=(1;−2;−1)uΔ→=[nP→,ud→]=(1;−2;−1).
Khi đó đường thẳng ΔΔ được xác định là đi qua A(−3;1;1)A(−3;1;1) và có VTCP −→uΔ=[−→nP,→ud]=(1;−2;−1)uΔ→=[nP→,ud→]=(1;−2;−1) nên có phương trình Δ:x+31=y−1−2=z−1−1Δ:x+31=y−1−2=z−1−1.
Đặt \(A=x^2-3x\)
\(A=\left(x^2-3x+\frac{9}{4}\right)-\frac{9}{4}\)
\(A=\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\)
Mà \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow A\ge-\frac{9}{4}\)
Dấu "=" xảy ra khi : \(x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)
Vậy \(A_{Min}=-\frac{9}{4}\Leftrightarrow x=\frac{3}{2}\)
Đặt \(B=-x^2-2x\)
\(-B=x^2+2x\)
\(-B=\left(x^2+2x+1\right)-1\)
\(-B=\left(x+1\right)^2-1\)
Mà \(\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow-B\ge-1\Leftrightarrow B\le1\)
Dấu "=" xảy ra khi : \(x+1=0\Leftrightarrow x=-1\)
Vậy \(B_{Max}=1\Leftrightarrow x=-1\)
Lời giải:
Ta có:
$x^2-3x+11=(x-\frac{3}{2})^2+\frac{35}{4}\geq \frac{35]{4}$
$\Rightarrow \frac{31}{x^2-3x+11}\leq 31:\frac{35}{4}=\frac{124}{35}$
$\Rightarrow \frac{31}{x^2-3x+11}+15\leq \frac{649}{35}$
Vậy gtln của biểu thức là $\frac{649}{35}$ khi $x=\frac{3}{2}$
\(N=x-x^2\)
\(N=-x^2+x\)
Có \(-x^2\le0\)
\(\Rightarrow N\le0+x=x\)
Dấu "=" xảy ra khi x = 0
Vậy Min N = 0+0=0 <=> x = 0
=x2-2.x.1/2+(1/2)^2-1/4
=(x-1/2)^2-1/4
Vì (x-1/2)^2- 1/4>= -1/4
nên GTNN CỦA A= -1/4 KHI : x=1/2
Đề bài sai, biểu thức này chỉ có Min, không có Max.
Ta có: \(25x^2+x+25\)
\(=\left(5x\right)^2+2\cdot5x\cdot\dfrac{1}{10}+\dfrac{1}{100}+\dfrac{2499}{100}\)
\(=\left(5x+\dfrac{1}{10}\right)^2+\dfrac{2499}{100}\ge\dfrac{2499}{100}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{1}{50}\)