Trong số các hình chữ nhật cùng có chu vi 16 cm, hãy tìm hình chữ nhật có diện tích lớn nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Hướng dẫn giải: Gọi độ dài các cạnh của hình chữ nhật là a, b với 0 < a,b < 8
Ta có được:
Khi đó diện tích hình chữ nhật là: S ( a ) = a ( 8 - a ) = - 2 a + 8
Ta có bảng biến thiên như hình vẽ bên dưới đây
Bảng biến thiên
Dựa vào bàng biến thiên trên vậy ta kết luận được hình chữ nhật có diện tích lớn nhất bằng 16 khi cạnh bằng 4.
Nửa chu vi hình chữ nhật là: 16 : 2 = 8cm.
Gọi độ dài 1 cạnh của hình chữ nhật là x (cm)
⇒ độ dài cạnh còn lại là : 8 – x (cm)
⇒ Diện tích của hình chữ nhật là:
Vậy trong các hình chữ nhật có chu vi 16cm thì hình vuông cạnh bằng 4cm có diện tích lớn nhất bằng 16 c m 2 .
Nửa chu vi hình chữ nhật là: 16 : 2 = 8cm.
Gọi độ dài 1 cạnh của hình chữ nhật là x (cm)
⇒ độ dài cạnh còn lại là : 8 – x (cm)
⇒ Diện tích của hình chữ nhật là:
Vậy trong các hình chữ nhật có chu vi 16cm thì hình vuông cạnh bằng 4cm có diện tích lớn nhất bằng 16cm2.
Nửa chu vi là 16:2=8=1+7=2+6=3+5=4+4
Những hình chữ nhật cần tìm là những hình chữ nhật có ( chiều dài ; chiều rộng)= ( 7;1) , (6;2), (5;3) , (4;4)
Trong những hình chữ nhật tìm đc, hình chữ nhật có chiều dài 4 cm ,chiều rộng 4 cm có diện tích lớn nhất, là 16 cm2
Các hình chữ nhật có chu vi là 16cm với số đo cạnh là số tự nhiên là:
dài (cm) | rộng (cm) |
1 | 15 |
2 | 14 |
3 | 13 |
4 | 12 |
5 | 11 |
6 | 10 |
7 | 9 |
8 | 8 |
Giả sử ta gọi cạnh của hình vuông (chiều dài bằng chiều rộng) là a, như vậy diện tích hình vuông này là \(S_{hv}=a\times a\). Vì chu vi không đổi nên dĩ nhiên nếu một chiều tăng lên bao nhiêu thì chiều kia phải giảm đi bấy nhiêu (có sự khác biệt giữa hai kích thước nên đây là một hình chữ nhật bình thường). Gọi lượng tăng/giảm đó là k, lúc này diện tích hình chữ nhật là \(S_{hcn}=\left(a+k\right)\times\left(a-k\right)=a\times a-a\times k+a\times k-k\times k=a\times a-k\times k\)
Và hiển nhiên \(S_{hcn}=a\times a-k\times k\le S_{hv}=a\times a\)
Như vậy trong tất cả các hình chữ nhật có cùng chu vi thì hình vuông có diện tích lớn nhất, do đó trong trường hợp này hình vuông cạnh 8cm có diện tích lớn nhất.
Nửa chu vi là 16:2=8=1+7=2+6=3+5=4+4
Những hình chữ nhật cần tìm là những hình chữ nhật có ( chiều dài ; chiều rộng)= ( 7;1) , (6;2), (5;3) , (4;4)
Trong những hình chữ nhật tìm đc, hình chữ nhật có chiều dài 4 cm ,chiều rộng 4 cm có diện tích lớn nhất, là 16 cm2
Lưu ý hình vuông là hình chữ nhật đặc biệt
do la hinh vuong co canh la 4
4*4=16 lon nhat trong cac hinh chu nhat co chu vi la 16
Nửa chu vi là :
16 : 2 = 8 = 1 + 7 = 2 + 6 = 3 + 5 = 4 + 4
Những hình chữ nhật cần tìm là những hình chữ nhật có ( chiều dài ; chiều rộng) = ( 7; 1 ) , ( 6 ; 2 ) , ( 5 ; 3 ) , ( 4 ; 4 )
Trong những hình chữ nhật tìm được : Hình chữ nhật có chiều dài 4 cm ,chiều rộng 4 cm có diện tích lớn nhất là 16 cm2
Lưu ý hình vuông là hình chữ nhật đặc biệt
a) Hình chữ nhật ABCD đã cho có diện tích là SACBD = 3.5 = 15 (cm2)
Hình chữ nhật có kích thước là 1cm x 12cm có diện tích là 12cm2 và chu vi là (1 + 12).2 = 26 (cm) (có 26 > 15)
Hình chữ nhật kích thước 2cm x 7cm có diện tích là 14cm2 và chu vi là (2 + 7).2 = 18 (cm)
(có 18 > 15).
Như vậy, vẽ được nhiều hình chữ nhật có diện tích bé hơn nhưng có chu vi lớn hơn hình chữ nhật ABCD cho trước.
b) + Chu vi hình chữ nhật ABCD đã cho là (5 + 3).2 = 16 cm
Cạnh hình vuông có chu vi bằng chu vi hình chữ nhật ABCD là: 16 : 4 = 4 cm
Diện tích hình vuông này là 4.4 = 16 cm2
(Ở trên hình là ví dụ hình vuông MNPQ có cạnh là 4cm)
Vậy SHCN < SHV
+ Trong các hình chữ nhật có cùng chu vi thì hình vuông có diện tích lớn nhất.
Gọi cạnh của hình chữ nhật có độ dài lần lượt là a, b.
Hình vuông có cùng chu vi với hình chữ nhật nên cạnh hình vuông là
⇒ Hình vuông có diện tích lớn nhất.
Nửa chu vi hình chữ nhật là: 16 : 2 = 8cm.
Gọi độ dài 1 cạnh của hình chữ nhật là x (cm)
⇒ độ dài cạnh còn lại là : 8 – x (cm)
⇒ Diện tích của hình chữ nhật là:
Vậy trong các hình chữ nhật có chu vi 16cm thì hình vuông cạnh bằng 4cm có diện tích lớn nhất bằng 16cm2.
Kí hiệu x, y thứ tự là chiều dài và chiều rộng của hình chữ nhật (0 < x, y < 16). Khi đó x + y = 8. Theo bất đẳng thức Cô-si, ta có : 8 = x + y ≥ ⇔ xy ≤ 16.
xy =16 ⇔ x = y = 4. Vậy diện tích hình chữ nhật lớn nhất bằng 16 cm2 khi x = y = 4(cm), tức là khi hình chữ nhật là hình vuông.