B=1/100^2+1/101^2+1/102^2+1/103^2+...+1/199^2. chứng minh 1/100<B<1/99
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{200}>\dfrac{1}{200}+\dfrac{1}{200}+...+\dfrac{1}{200}=\dfrac{100}{200}=\dfrac{1}{2}\)
Lại có:
\(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{200}< \dfrac{1}{101}+\dfrac{1}{101}+...+\dfrac{1}{101}=\dfrac{100}{101}\)
Vậy ...
Những dãy trên đều có 100 số hạng.
Dãy trên có số số hạng là :
( 199 - 1 ) : 1 + 1 = 199 ( số hạng )
Tổng của dãy số trên là :
( 199 + 1 ) x 199 : 2 = 19900
Đáp số : 19900
1 + 2 + 3 + 4 ..... 99 + 100 + 101 + 102 +103 + 104 ..... 189 + 199 = ?
Số số hạng là : ( 199 - 1 ) : 1 + 1 = 199
Tổng = ( 1 + 199 ) . 199 : 2 = 19900
Đặt \(S=\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+...+\frac{1}{199\cdot200}\)
\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{199}-\frac{1}{200}\)
\(S=\left(1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(S=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(S=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(S=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
Ta có đpcm
Làm ơn giải giúp mình nhanh nhanh nhé, mình đang cần gấp, ai giải được mình k cho
1/101+1/102+..+1/200=(1+1/2+1/3+...+1/100)+1/101+1/102+1/103+...+1/200-(1+1/2+1/3+...+1/100)
=(1/2+1/4+1/6+...+1/200)+(1+1/3+1/5+...+1/199)-2(1/2+1/4+1/6+...+1/200)
=(1+1/3+1/5+...+1/199)-(1/2+1/4+1/6+...+1/200)
=1-1/2+1/3-1/4+1/5-1/6+...+1/199-1/200
suy ra ĐPCM
nguyen thieu cong thanh ơi cho mình hỏi:
sao lại là :2(1/2+1/4+1/6+...+1/200)
phải là : (1/2+1/4+1/6+...+1/200) chứ
đúng hok?????