Cho tam giác ABC.Gọi M là trung điểm của BC.Chứng minh rằng:MA<(AB+AC)^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trên tia đối của tia MA lấy điểm K sao cho MK=MA
Xét \(\Delta AMB\) và \(\Delta KMC\) có:
\(AM=MK\)
\(\widehat{AMB}=\widehat{KMC}\left(đ.đ\right)\)
\(MB=MC\)
\(\Rightarrow\Delta AMB=\Delta KMC\left(c.g.c\right)\)
\(\Rightarrow AB=CK\)
Theo BĐT tam giác,ta có:
\(AC+CK>AK\)
\(\Rightarrow AC+AB>2AM\)
\(\Rightarrow AM< \frac{AB+AC}{2}\left(đpcm\right)\)
Bạn tự vẽ hình
Lấy E đối xứng với A qua M
Có M là tđ của AE và BC
nên ABCE là hình bình hành
nên AB=CE
Xét tam giác ACE có AC+CE>AE
suy ra AC+AB>2AM
hay (AC+AB)/2>AM(đpcm)
Xét ΔABC có
CM là trung tuyến
BN là trung tuyến
CM cắt BN tại O
Do đó: O là trọng tâm
=>OM=1/3MC
ta có: AM = 1/2 BC => AM = BM, CM
xét tam giác ABM có : AM = BM
=> ABM cân tại M
xét tam giác ACM có : AM = CM
=> ACM cân tại M
Mà góc AMB + AMC = 180 độ ( kề bù )
=> góc B + góc BAM + góc C + góc CAM = 180 độ
Mà góc B = góc BAM
góc C = góc CAM
=> BAM + CAM = 90 độ
=> tam giác ABC cân tại A
TK
giả sử N là trung điểm AC
mà M là trung điểm AB ( gt )
=> MN là đường trung bình tam giác ABC
=> MN // BC
Vậy N là trung điểm AC