Chứng minh rằng với mọi \(n\in N\); \(n\ge2\) ta có :
\(\dfrac{3}{9.14}+\dfrac{3}{14.19}+\dfrac{3}{19.24}+..........+\dfrac{3}{\left(5n-1\right)\left(5n+4\right)}< \dfrac{1}{15}\)
Help me!!!!!!!!!!!!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu \(n=0\) thì \(5^0-1=1-1=0⋮4\)
Nếu \(n=1\) thì \(5^1-1=5-1=4⋮4\)
Nếu \(n\ge2\) thì 2 số tận cùng khi lũy thừa với cơ số 5 luôn là 25.
\(\Rightarrow5^n-1=\left(...25\right)-1=\left(...24\right)⋮4\)(đpcm)
2 Số tận cùng chia hết cho 4 thì số đó chia hết cho 4.
a) 101n+1-101n=101n.101-101n=101n(101-1)=100.101n chia hết cho 100
c) n2(n-1)-2n(n-1)=(n2-2n)(n-1)=n(n-1)(n-2)
vì n, (n-1), (n-2) là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 2, 1 số chia hết cho 3
Mà(2, 3) = 1
⇒n(n-1)(n-2) chia hết cho 2.3 = 6
Ta xét hai khả năng:
a. Nếu \(n⋮3\)thì rõ ràng \(\left(n^3+2n\right)⋮3.\)
b. Nếu n không chia hết cho 3 thì n có dạng n = 3k + 1 hoặc n = 3k + 2 với k \(\in N\).
*Với \(\text{n = 3k+ 1:}\left(n^3+2n\right)=\left(3k+1\right)^3+2\left(3k+1\right).\)
\(=27k^3+27k^2+9k+1+6k+2=3\left(9k^3+9k^2+5k+1\right)⋮3.\)
*Với \(n=3k+2:n^3+2n=\left(3k+2\right)^3+2\left(3k+2\right).\)
\(=27k^3+54k^2+36k+8+6k+4=3\left(9k^3+18k^2+14k+4\right)⋮3.\)
Mệnh đề được chứng minh.
P/s: không chắc lắm:)
TA Thấy:
\(n^3-n=n\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\)
Vì \(n^3-n\)là tích của 3 số tự nhiên liên tiếp nên \(\left(n^3-n\right)⋮3\)
Mà \(3n⋮3\)
do đó \(\left(n^3-n+3n\right)⋮3\)
Hay \(n^3+2n⋮3\left(ĐPCM\right)\)
Cm: \(\forall\)\(x\in\) N ta có: (n + 45).(4n2 -1) ⋮ 3
Trong biểu thức không hề chứa \(x\) em nhá
Biểu thức chứa \(x\) là biểu thức nào thế em?
Bài này em nghĩ là phải sửa thành với mọi \(n\inℕ\) ạ.
Đặt \(P=\left(n+45\right)\left(4n^2-1\right)\)
Với \(n⋮3\) thì hiển nhiên \(n+45⋮3\), suy ra \(P⋮3\)
Với \(n⋮̸3\) thì \(n^2\equiv1\left[3\right]\) nên \(4n^2\equiv1\left[3\right]\) hay \(4n^2-1⋮3\), suy ra \(P⋮3\)
Vậy, với mọi \(n\inℕ\) thì \(\left(n+45\right)\left(4n^2-1\right)⋮3\) (đpcm)
Hoặc bạn cũng có thể làm là:
Do: \(25\equiv6\left(mo\text{d}19\right)\Rightarrow25^n\equiv6^n\left(mo\text{d}19\right)\)
\(\Rightarrow7.25^n+12.6^n\equiv7.6^n+12.6^n\left(mo\text{d}19\right)\)
\(\Rightarrow7.5^{2n}+12.6^n\equiv19.6^n\left(mo\text{d}19\right)\)
Mà: \(19.6^n\equiv0\left(mo\text{d}19\right)\)
\(\Rightarrow7.5^{2n}+12.6^n\equiv0\left(mo\text{d}19\right)\)
Hay 7.52n + 12.6n chia hết cho 19.
(_Bài này mình làm theo phép toán đồng dư bạn có thể tham khảo thêm hoặc nếu đã học 'mod' thì cũng có thể áp dụng_)
b) 7.52n + 12.6n
= 7.25n + 12.6n
= 7.25n - 7.6n + 19.6n
= 7(25n - 6n) + 19.6n
= 7(25 - 6)[X] + 19.6n
= 7.19.[X] + 19.6n
= 19 .(7[X] + 6n)chia hết cho 19
kệ!! cái loại người chỉ dc cá mách lẻo là ko ai bằng! ra kia cho người khác trả lời câu hỏi!! chắn đường chắn lối tốn cả diện tích!!
Ra chỗ khác ngay!!