Cho biểu thức S=a13+a23+...+a20133 và P=a1+a2+...+a2013 ; \(a\in Z\)
Chứng minh \(S⋮6\) khi và chỉ khi \(P⋮6\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
S=(a1+a2+a3)+(a4+a5+a6)+...+(a10+a11+a12)+a13=7
S=(-5)+(-5)+(-5)+(-5)+a13=7
S=(-20)+a13=7
=>a13=7-(-20)
=>a13=27
\(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=...=\dfrac{a_{2013}}{a_{2014}}=\dfrac{a_{2014}}{a_1}=\dfrac{a_1+a_2+...+a_{2014}}{a_1+a_2+...+a_{2014}}=1\\ \Leftrightarrow a_1=a_2=...=a_{2014}\\ \Leftrightarrow Q=\dfrac{\left(2014a_1\right)^2}{a_1^2\left(1+2+...+2014\right)}=\dfrac{2014^2\cdot a_1^2}{a_1^2\cdot\dfrac{2015\cdot2014}{2}}=\dfrac{2\cdot2014^2}{2015\cdot2014}=\dfrac{2\cdot2014}{2015}=...\)
Giả sử tích (a1−b1)(a2−b2)...(a2013−b2013) là số lẻ
Ta có: a13-a1=a1(a12-1)=(a1-1)a1(a1+1), là tích của 3 số nguyên liên tiếp nên a13-a1 chia hết cho 2 và 3. Mà (2;3)=1
=> a13-a1 chia hết cho 6
Chứng minh tương tự:
a23-a2 chia hết cho 6
...
a20133 - a2013 chia hết cho 6.
=>(a13-a1) + (a23-a2)+...+(a20132 - a2013) chia hết cho 6
Hay S-P chia hết cho 6.
Do đó: Nếu một trong 2 biểu thức S, P chia hết cho 6 ta suy ra biểu thức còn lại cũng chia hết cho 6.
Vậy S chia hết cho 6 khi và chỉ khi P chia hết cho 6.
thanks