A=2+2^2+2^3+...+2^10
chứng tỏ
a)A chia hết cho 3
b)B chia hết cho 31
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a=2+2^2+2^3+...+2^10
a=(2+2^2)+(2^3+2^4)+...+(2^9+2^10)
a=2.(1+2)+2^3.(1+2)+...+2^9.(1+2)
a=3.(2+2^3+...+2^9)
=> a chia hết cho 3
a=2+2^2+2^3+...+2^10
a=(2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+2^10)
a=2.(1+2+4+8+16)+2^6.(1+2+4+8+16)
a=31.(2+2^6)
=> a chia hết cho 31
chúc bạn học tốt nha
Bài 1)
a) Ta có: \(A=m^2+m+1=m(m+1)+1\)
Vì $m,m+1$ là hai số tự nhiên liên tiếp nên tích của chúng chia hết cho $2$ hay $m(m+1)$ chẵn
Do đó $m(m+1)+1$ lẻ nên $A$ không chia hết cho $2$
b)
Nếu \(m=5k(k\in\mathbb{N})\Rightarrow A=25k^2+5k+1=5(5k^2+k)+1\) chia 5 dư 1
Nếu \(m=5k+1\Rightarrow A=(5k+1)^2+(5k+1)+1=25k^2+15k+3\) chia 5 dư 3
Nếu \(m=5k+2\Rightarrow A=(5k+2)^2+(5k+2)+1=25k^2+25k+7\) chia 5 dư 2
Nếu \(m=5k+3\Rightarrow A=(5k+3)^2+(5k+3)+1=25k^2+35k+13\) chia 5 dư 3
Nếu \(m=5k+4\) thì \(A=(5k+4)^2+(5k+4)+1=25k^2+45k+21\) chia 5 dư 1
Như vậy tóm tại $A$ không chia hết cho 5
Bài 2:
a) \(P=2+2^2+2^3+...+2^{10}\)
\(=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^9+2^{10})\)
\(=2(1+2)+2^3(1+2)+2^5(1+2)+..+2^9(1+2)\)
\(=3(2+2^3+2^5+..+2^9)\vdots 3\)
Ta có đpcm
b) \(P=(2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+2^{10})\)
\(=2(1+2+2^2+2^3+2^4)+2^6(1+2+2^2+2^3+2^4)\)
\(=(1+2+2^2+2^3+2^4)(2+2^6)=31(2+2^6)\vdots 31\)
Ta có dpcm.
Có: a+b chia hết cho 2
=> a và b chia hết cho 2
=> a và b là số chẵn
Vì tất cả các số chẵn nhân với bất kì số nào thì nó vẫn là số chẵn.
=> a+3b chia hết cho 2
Giải:
(a+b) chia hết cho 2
=> a và b chia hết cho 2
=> a và b là số chẵn
Vì tất cả các số chẵn nhân với bất kì số nào thì nó vẫn là số chẵn
=> (a+3b) chia hết cho2
a) A = \(\left(2+2^2+2^3+...+2^5\right)+\left(2^6+2^7+...+2^{10}\right)\)
\(=\left(2.31\right)+2^5.31=31.\left(2+2^5\right)\)
Vậy A chia hết cho 31
chắc bạn chép sai đầu bài ý a rồi , mình sửa lại nhé
Đặt A=\(2+2^2+2^3+...+2^{100}\)
Tổng A có :(100-1):1+1=100(số hạng)
=>A=\(2+2^2+2^3+...+2^{100}\)
A=\(\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
(có \(\dfrac{100}{5}=20\) nhóm , mỗi nhóm có 5 số hạng)
A=\(2\left(1+2+2^2+2^3+2^4\right)+2^6\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)
A=\(2.31+2^6.31+...+2^{96}.31\)
A=\(31.\left(2+2^6+...+2^{96}\right)⋮31\)(đpcm)
Sửa đề câu a tí nhé:
Chứng tỏ \(\left(2+2^2+2^3+...+2^{100}\right)\)chia hết cho 31
Giải:
Đặt \(S=\left(2+2^2+2^3+...+2^{100}\right)\)
\(=2.\left(1+2+2^2+2^3+2^4\right)+2^6.\left(1+2+2^2+2^3+2^4\right)+...+\left(1+2+2^2+2^3+2^4\right).2^{96}\)
\(=2.31+2^6.31+...+2^{96}.31\)
\(=31.\left(2+2^6+...+2^{96}\right)\)
\(\Rightarrow S⋮31\)
Câu 1:
$A=(1+5+5^2)+(5^3+5^4+5^5)+...+(5^{2016}+5^{2017}+5^{2018})$
$=(1+5+5^2)+5^3(1+5+5^2)+....+5^{2016}(1+5+5^2)$
$=(1+5+5^2)(1+5^3+...+5^{2016})$
$=31(1+5^3+...+5^{2016})\vdots 31$ (đpcm)
Câu 2:
$2x+7\vdots 2x-2$
$\Rightarrow (2x-2)+9\vdots 2x-2$
$\Rightarrow 9\vdots 2x-2$
$\Rightarrow 2x-2$ là ước của $9$
Mà $2x-2$ là số chẵn với mọi $x$ nguyên, còn $Ư(9)\in \left\{\pm 1; \pm 3; \pm 9\right\}$ (không có ước nào chẵn)
$\Rightarrow$ không tồn tại $x$ nguyên thỏa mãn yêu cầu đề bài.
a, A = 2+22+23+...+210
A = (2+22)+(23+24)+...+(29+210)
A = 2(1+2) + 23(1+2) +.....+ 29(1+2)
A = 2.3 + 23.3 +....+ 29.3
A = 3.(2+23+...+29) chia hết cho 3 (đpcm)
b, A = 2+22+23+...+210
A = (2+22+23+24+25)+(26+27+28+29+210)
A = 2(1+2+22+23+24) + 26.(1+2+22+23+24)
A = 2.31 + 26.31
A = 31.(2+26) chia hết cho 31 (Đpcm)