Tính giá trị của biểu thức \(A=2^{17}-2^{16}-2^{15}-....-2^2-2-1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(20^2+18^2+16^2+......+4^2+2^2\right)-\left(19^2+17^2+.....+3^2+1^2\right)\)
\(=20^2-19^2+18^2-17^2+......+2^2-1^2\)
\(=\left(20-19\right)\left(20+19\right)+\left(18-17\right)\left(18+17\right)+.......+\left(2-1\right)\left(2+1\right)\)
\(=39+35+....+7+3\)
\(=\left(39+3\right)\left[\left(39-3\right):4+1\right]:2=210\)
2A = 2^18 - 2^17 - 2^15 - 2^14 - 2^13 - ... - 2^2 - 2
2A - A = A = ( 2^18 - 2^17 - 2^16 - 2^15 - 2^14 - 2^13 - ... - 2^2 - 2 ) - ( 2^17 - 2^16 - 2^15 - 2^14 - 2^13 - ... -2 - 1 )
A = 2^18 - 2^17 - 2^16 - 2^15 - 2^14 - 2^13 - ... - 2^2 - 2 - 2^17 + 2^16 + 2^15 + 2^14 + 2^13 + ... + 2 + 1
A = 2^18 - 2^17 - 2^17 + 1
A = 2^18 - 2 . 2^17 + 1
A =2^17- 2^16-...-2-2^0
Ax2= 2^18-2^17-.....-2^2-2^1
Ax2-A=2^18-2^17-...-2^2-2^1-2^17+2^16+....+2^1+1
A=2^18-2^17-2^17+1
A=2^18-2^17X2+1
A=2^18-2^18+1
A=0+1
A=1
Bài 1:
Ta có:
\(A=9x^4-15x^3-6x^2+5=3x^2\left(3x^2-5x\right)-6x^2+5=3x^2.2-6x^2+5=6x^2-6x^2+5=5\)
Vậy, \(A=5\)
Bài 2: Ta có:
\(3^{15}+3^{16}+3^{17}=3^{15}+3^{15}.3+3^{15}.3^2=3^{15}.\left(1+3+3^2\right)=3^{15}.13\)
\(\Rightarrow3^{15}.13\) chia hết cho \(13\)
Do đó: \(3^{15}+3^{16}+3^{17}\) chia hết cho \(13\)
2,
a) \(315-\left(135-x\right)=215\)
\(\Rightarrow135-x=315-215\)
\(\Rightarrow135-x=100\)
\(\Rightarrow x=135-100\)
\(\Rightarrow x=35\)
b) \(x-320:32=25\cdot16\)
\(\Rightarrow x-10=5^2\cdot4^2\)
\(\Rightarrow x-10=20^2\)
\(\Rightarrow x-10=400\)
\(\Rightarrow x=410\)
c) \(3\cdot x-2018:2=23\)
\(=3\cdot x-1009=23\)
\(\Rightarrow3\cdot x=1032\)
\(\Rightarrow x=1032:3\)
\(\Rightarrow x=344\)
d) \(280-9\cdot x-x=80\)
\(\Rightarrow280-x\cdot\left(9+1\right)=80\)
\(\Rightarrow280-10\cdot x=80\)
\(\Rightarrow10\cdot x=280-80\)
\(\Rightarrow10\cdot x=200\)
\(\Rightarrow x=20\)
e) \(38\cdot x-12\cdot x-x\cdot16=40\)
\(\Rightarrow x\cdot\left(38-12-16\right)=40\)
\(\Rightarrow x\cdot10=40\)
\(\Rightarrow x=40:10\)
\(\Rightarrow x=4\)
Ta có : ( 1 X 3 X .........X6) chia hết cho 2 ( số chẵn)
( 18 x 17 x16 x 15 ) chia hết cho 2 ( số chẴN )
SUY RA biểu thức trên = chẵn - chẵn = chẵn ( chia hết cho 2 )
ta có: 9 chia hết cho 2;3;9
=> 1 x 3 x 5 x 7 x 9 x ...x 51 x 53 x 6 chia hết cho 2;3;9
18 chia hết cho 2;3;9
=> 18 x 17 x 16 x 15 chia hết cho 2;3;9
=> ( 1 x 3 x 5 x 7 x ...x 51 x 53 x 6) - ( 18 x 17 x 16 x 15) chia hết cho 2;3;9
ta có: 5 chia hết cho 5
=> 1 x 3 x 5 x 7 x ....x 51 x 53 x 6 chia hết cho 5
15 chia hết cho 5
=> 18 x 17 x 16 x 15 chia hết cho 5
=> ( 1 x 3 x5 x 7 x ...x 51 x 53 x 6) - ( 18 x17 x 16 x15) chia hết cho 5
KL: ( 1 x 3 x 5 x7 x...x51 x 53 x 6) - ( 18 x17 x 16 x 15) chia hết cho 2;3;5;9
`B17:`
`a)` Với `x \ne +-3` có:
`A=[x+15]/[x^2-9]+2/[x+3]`
`A=[x+15+2(x-3)]/[(x-3)(x+3)]`
`A=[x+15+2x-6]/[(x-3)(x+3)]`
`A=[3x+9]/[(x-3)(x+3)]=3/[x-3]`
`b)A=[-1]/2<=>3/[x-3]=-1/2<=>-x+3=6<=>x=-3` (ko t/m)
`=>` Ko có gtr nào của `x` t/m
`c)A in ZZ<=>3/[x-3] in ZZ`
`=>x-3 in Ư_3`
Mà `Ư_3={+-1;+-3}`
`@x-3=1=>x=4`
`@x-3=-1=>x=2`
`@x-3=3=>x=6`
`@x-3=-3=>x=0`
________________________________
`B18:`
`a)M=1/3` `ĐK: x \ne +-4`
`<=>(4/[x-4]-4/[x+4]).[x^2+8x+16]/32=1/3`
`<=>[4(x+4)-4(x-4)]/[(x-4)(x+4)].[(x+4)^2]/32=1/3`
`<=>32/[x-4].[x+4]/32=1/3`
`<=>3x+12=x-4`
`<=>x=-8` (t/m)
Bài 4:
\(A=2x^2-15\ge-15\\ A_{min}=-15\Leftrightarrow x=0\\ B=2\left(x+1\right)^2-17\ge-17\\ B_{min}=-17\Leftrightarrow x=-1\)
Bài 5:
\(A=-x^2+14\le14\\ A_{max}=14\Leftrightarrow x=0\\ B=25-\left(x-2\right)^2\le25\\ B_{max}=25\Leftrightarrow x=2\)
mik chưa học giá trị lớn nhất là max và giá trị nhỏ nhất là min nên bạn cho mik kí hiệu khác nha
\(A=2^{17}-\left(1+2+2^2+...+2^{16}\right)\)
đặt \(1+2+2^2+...+2^{16}=B\Rightarrow A=2^{17}-B\)
\(B=1+2+2^2+...+2^{16}\)
\(2B=2+2^2+2^3+...+2^{17}\)
\(B=2B-B=\left(2+2^2+...+2^{17}\right)-\left(1+2+...+2^{16}\right)\)
\(B=2^{17}-1\)
\(A=2^{17}-B=2^{17}-\left(2^{17}-1\right)=2^{17}-2^{17}+1=1\)
Vậy A=1
A=214 + 1