K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2017

a) Ta có: \(8\times2^n+2^{n+1}\) \(=8\times2^n+2^n\times2\) \(=2^n\times\left(8+2\right)\) \(=2^n\times10\) \(=...0\)

Vậy \(8\times2^n+2^{n+1}\) có tận cùng bằng chữ số 0 (đpcm).

b) Ta có: \(3^{n+3}-2\times3^n+2^{n+5}-7\times2^n\) \(=3^n\times3^3-2\times3^n+2^n\times2^5-7\times2^n\) \(=3^n\times\left(3^3-2\right)+2^n\times\left(2^5-7\right)\) \(=3^n\times\left(27-2\right)+2^n\times\left(32-7\right)\) \(=3^n\times25+2^n\times25\) \(=\left(3^n+2^n\right)\times25\)

\(25⋮25\)

nên \(\left(3^n+2^n\right)\times25⋮25\)

Vậy \(3^{n+3}-2\times3^n+2^{n+5}-7\times2^n\) chia hết cho 25 (đpcm).

4 tháng 6 2019

a) 8 . 2n + 2n+1 = 2n . ( 8 + 2 ) = 2n . 10 = ....0 

b) có vấn đề

c) 4n+3 + 4n+2 - 4n+1 - 4n = 4n . ( 4+ 42 - 4 - 1 ) = 4n . 75 = 4n-1 . 4 . 75 = 300 . 4n-1 \(⋮\)300

15 tháng 6 2016

Ta chỉ cần tách các tổng thành tích thôi em nhé :)

a. \(8.2^n+2^{n+1}=8.2^n+2.2^n=10.2^n\) có tận cùng là chữ số 0.

b. \(A=27.3^n-2.3^n+32.2^n-7.2^n=25.3^n+25.2^n=25\left(3^n+2^n\right)\) nên A chia hết 25.

31 tháng 5 2015

a = 2\(^{n+1}\)(4+1) =10.2\(^n\) tận cùng =0

b= 3\(^n\)(27 -2) + 2\(^n\)(32-7)

= 25 (3\(^n\)+2\(^n\)) chia hết cho 25

 

 

 

 

 

 

a.8.2n+2n+1=2n(8+2)=2n.10 có tận cùng là 0

=>đpcm

b.3n+3-2.3n+2n+5-7.2n=3n(27-2)+2n(32-7)

=25.3n+25.2n=25(3n+2n) chia hết cho 25

=>đpcm

10 tháng 3 2017

a)\(=8.2^n+2^n.2=2^n\left(8+2\right)=2^n\cdot10\)

do đó \(8\cdot2^n+2^{n+1}\)có tận cùng là 0

b)\(=3^n\cdot3 ^3-2\cdot3^n+2^n\cdot2^5-7\cdot2^n\)

\(=3^n\left(3^2-2\right)+2^n\left(2^5-7\right)\)

\(3^n\cdot7+2^n\cdot25⋮25\)

do đó biểu thức b) chia hết cho 25

10 tháng 3 2017

câu a)

\(8.2^n+2^{n+1}=8.2^n+2.2^n=10.2^n\)

chia hết cho 10 nên có tận cùng là 0

câu b)

\(3^{n+3}-2.3^n+2^{n+5}-7.2^n=3^3.3^n-3^n+2^5.2^n-7.2^n\)

\(=3^n\left(3^2-2\right)+2^n\left(2^5-7\right)=25.3^n+25.2^n=25\left(3^n+2^n\right)\)

chia hết cho 5

chúc bạn học tốt

4 tháng 4 2017

B=n(n4-4n2+4)-n3 = n5-4n3+4n-n3=n5-5n3+4n=n(n4-5n2+4)=n(n4-n2-4n2+4)=n[n2(n2-1)-4(n2-1)]=n(n2-1)(n2-4)=n(n-1)(n-2)(n+1)(n+2)

=> B=(n-2)(n-1).n(n+1)(n+2)

Nhận thấy, các số (n-2); (n-1); n; (n+1) và (n+2) là 5 số tự nhiên liên tiếp nên ít nhất phải có 2 số là số chẵn và 1 số phải có tận cùng là 5 hoặc 0

=> Số tận cùng của B là 0

=> B chia hết cho 10 với mọi n thuộc Z

4 tháng 4 2017

cảm ơn bạn nhiều

18 tháng 2 2017

a, Ta có : 8.2n + 1n + 1 

= 8.2n + 1 (vì 1n + 1 lúc nào cũng bằng 1)

= 23 + n . 1

Mà 23 + n luôn luôn ko chia hết cho10

Nên 8.2n + 1n + 1  ko chi hết cho10

12 tháng 7 2017

xét n(n+1)(4n+1)

Có (nn+n1)(4n+1)

(2n+n)(4n+1)=3n(4n+1)

Mà 3 nhân với số nào cũng chia hết cho 3=>3n(4n+1)chia hết cho 3

xét3n(4n+1)

có 3n*4n+3n

=>n(3+3)4n

=>n6*4n=24n chia hết cho 2

12 tháng 7 2017

mình làm ko biết đúng không 

nhung chac la se dung