Tim m de phuong trinh mx2 -2x+2=0 co 2 nghiem x1 ,x2 thoa man x1 +x2 =2m (m+1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. vs m=-1 ,thay vào pt(1) ,ta đc :
x^2 -(-1+2)x +2.(-1) =0
<=>x^2 -x-2 =0
Có : đenta = (-1)^2 -4.(-2) =9 >0
=> căn đenta =căn 9 =3
=> X1 =2 ; X2=-1
Vậy pt (1) có tập nghiệm S={-1;2}
a) Thay m=2 vào phương trình \(x^2+2\left(m-1\right)x-4m=0\), ta được:
\(x^2+2\cdot\left(2-1\right)x-4\cdot2=0\)
\(\Leftrightarrow x^2+2x-8=0\)(1)
\(\Delta=b^2-4ac=2^2-4\cdot1\cdot\left(-8\right)=4+32=36\)
Vì \(\Delta>0\) nên phương trình (1) có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-b-\sqrt{\Delta}}{2a}\\x_2=\dfrac{-b+\sqrt{\Delta}}{2a}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-2-\sqrt{36}}{2\cdot1}=\dfrac{-2-6}{2}=-4\\x_2=\dfrac{-2+\sqrt{36}}{2\cdot1}=\dfrac{-2+6}{2}=2\end{matrix}\right.\)
Vậy: Khi m=2 thì phương trình \(x^2+2\left(m-1\right)x-4m=0\) có hai nghiệm phân biệt là \(x_1=-4;x_2=2\)
b) Ta có: \(x^2+2\left(m-1\right)x-4m=0\)
\(\Delta=\left[2\left(m-1\right)\right]^2-4\cdot1\cdot\left(-4\right)\)
\(\Leftrightarrow\Delta=\left(2m-2\right)^2+16>0\forall m\)
\(\forall m\) thì phương trình \(x^2+2\left(m-1\right)x-4m=0\) luôn có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-\left(2m-2\right)-\sqrt{\Delta}}{2}\\x_2=\dfrac{-\left(2m-2\right)+\sqrt{\Delta}}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-2m+2-\sqrt{\left(2m-2\right)^2+16}}{2}\\x_2=\dfrac{-2m+2+\sqrt{\left(2m-2\right)^2+16}}{2}\end{matrix}\right.\)
Để x1 và x2 là hai số đối nhau thì \(x_1+x_2=0\)
\(\Leftrightarrow\dfrac{-2m+2-\sqrt{\left(2m-2\right)^2+16}}{2}+\dfrac{-2m+2+\sqrt{\left(2m-2\right)^2+16}}{2}=0\)
\(\Leftrightarrow-2m+2-2m+2=0\)
\(\Leftrightarrow-4m+4=0\)
\(\Leftrightarrow-4m=-4\)
hay m=1
Vậy: Khi m=1 thì phương trình \(x^2+2\left(m-1\right)x-4m=0\) có hai nghiệm phân biệt x1 và x2 thỏa mãn x1 và x2 là hai số đối nhau
a, Với m = 2 (1)<=>x^2+2x-8=0 rồi tính ra thôi
b, Để PT có 2 nghiệm PB thì
Δ=[2(m−1)]^2−4⋅1⋅(−4)Δ=[2(m−1)]2−4⋅1⋅(−4)
⇔Δ=(2m−2)^2+16>0∀m
Vì x1 và x2 là 2 số đối nhau nên x1+x2=0 <=> -2(m-1) = 0 <=> m=1
Vậy để PT có 2 nghiệm pbiet đối nhau thì m = 1
\(\Leftrightarrow x^3-3x^2+2-\left(3x^2-2x-1\right)m=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-2x-2\right)-\left(x-1\right)\left(3mx+m\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-\left(3m+2\right)x-m-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2-\left(3m+2\right)x-m-2=0\left(1\right)\end{matrix}\right.\)
(1) luôn có 2 nghiệm pb. Để pt có 3 nghiệm pb \(\Rightarrow1-\left(3m+2\right)-m-2\ne0\Rightarrow m\ne-\dfrac{3}{4}\)
TH1: \(x_3=1\) và \(x_1;x_2\) là nghiệm của (1)
\(\Rightarrow3m+2=2\Rightarrow m=0\) (thỏa mãn)
TH2: \(x_1=1\) và \(x_2;x_3\) là nghiệm của (1)
Kết hợp hệ thức Viet ta được: \(\left\{{}\begin{matrix}x_2=2x_3-1\\x_2+x_3=3m+2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_2=2x_3-1\\x_3=m+1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_2=2m+1\\x_3=m+1\end{matrix}\right.\)
Thế vào \(x_2x_3=-m-2\)
\(\Rightarrow\left(2m+1\right)\left(m+1\right)=-m-2\)
\(\Rightarrow2m^2+4m+3=0\) (vô nghiệm)
Vậy \(m=0\)
Ta có : x2 - 2x - 3m2 = 0
Tại m = 1 thì pt trở thành :
x2 - 2x - 3.12 = 0
<=> x2 - 2x - 3 = 0
<=> x2 - 3x + x - 3= 0
<=> x(x - 3) + (x - 3) = 0
<=> (x - 3)(x + 1) = 0
<=> \(\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}}\)
Ptr có nghiệm `<=>\Delta' >= 0`
`<=>[-(m+1)^2]-6m+4 >= 0`
`<=>m^2+2m+1-6m+4 >= 0`
`<=>m^2-4m+5 >= 0<=>(m-2)^2+1 >= 0` (LĐ `AA m`)
`=>` Áp dụng Viét có: `{(x_1+x_2=[-b]/a=2m+2),(x_1.x_2=c/a=6m-4):}`
Có:`(2m-2)x_1+x_2 ^2-4x_2=4`
`<=>(x_1+x_2-4)x_1+x_2 ^2-4x_2=4`
`<=>x_1 ^2+x_1 x_2 -4x_1+x_2 ^2-4x_2=4`
`<=>(x_1+x_2)^2-x_1x_2-4(x_1+x_2)=4`
`<=>(2m+2)^2-(6m-4)-4(2m+2)=4`
`<=>4m^2+8m+4-6m+4-8m-8=4`
`<=>4m^2-6m-4=0`
`<=>(2m-3/2)^2-25/4=0`
`<=>|2m-3/2|=5/2`
`<=>[(m=2),(m=-1/2):}`
\(\Delta'=\left(m-1\right)^2-\left(2m-3\right)=m^2+4>0;\forall m\)
\(\Rightarrow\) Pt luôn có 2 nghiệm pb với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=2m-3\end{matrix}\right.\)
- Với
\(x_1^2-2x_2=7\)
\(\Leftrightarrow x_1\left(x_1+x_2\right)-x_1x_2-2x_2=7\)
\(\Leftrightarrow2\left(m-1\right)x_1-\left(2m-3\right)-2x_2=7\)
\(\Leftrightarrow2mx_1-2\left(x_1+x_2\right)=2m+4\)
\(\Leftrightarrow mx_1-2\left(m-1\right)=m+2\)
\(\Leftrightarrow mx_1=3m\)
- Với \(m=0\) thỏa mãn
- Với \(m\ne0\Rightarrow x_1=3\)
Thế vào \(x_1+x_2=2\left(m-1\right)\Rightarrow x_2=2m-5\)
Thế tiếp vào \(x_1x_2=2m-3\) \(\Rightarrow3\left(2m-5\right)=2m-3\)
\(\Rightarrow m=3\)
Vậy \(\left[{}\begin{matrix}m=0\\m=3\end{matrix}\right.\)
Lời giải:
Để phương trình trên có hai nghiệm \(x_1,x_2\) thì trước tiên \(m\neq 0\)
\(\Delta'=1-2m>0\Leftrightarrow m<\frac{1}{2}\)
Áp dụng định lý Viete: \(x_1+x_2=\dfrac{2}{m}\). Mặt khác \(x_1+x_2=2m(m+1)\)
\(\Rightarrow \frac{2}{m}=2m(m+1)\Leftrightarrow m^3+m^2-1=0\) $(1)$
Giải PT trên, ta thấy nếu \(m\) là nghiệm $(1)$ thì \(m>\frac{1}{2}\), do đó không tồn tại $m$ thỏa mãn.
thank b nha