Nhập kết quả dưới dạng số thập phân gọn nhất.
(Nhập kết quả dưới dạng số thập phân gọn nhất).
Đường thẳng qua M vuông góc với AC cắt đường thẳng BC tại N.Khi đó độ dài đoạn MN là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BẠN NÀO NHÌN THẤY CÁI NÀY THÌ GIÚP MIK VỚI!MIK SẼ BẠN NHANH NHẤT!
Câu 11.12.
Kẻ đường cao \(AH,BK\).
Do tam giác \(\Delta AHD=\Delta BKC\left(ch-gn\right)\)nên \(DH=BK\).
Đặt \(AB=AH=x\left(cm\right),x>0\).
Suy ra \(DH=\frac{10-x}{2}\left(cm\right)\)
Xét tam giác \(AHD\)vuông tại \(H\):
\(AD^2=AH^2+HD^2=x^2+\left(\frac{10-x}{2}\right)^2\)(định lí Pythagore)
Xét tam giác \(DAC\)vuông tại \(A\)đường cao \(AH\):
\(AD^2=DH.DC=10.\left(\frac{10-x}{2}\right)\)
Suy ra \(x^2+\left(\frac{10-x}{2}\right)^2=10.\frac{10-x}{2}\)
\(\Leftrightarrow x=2\sqrt{5}\)(vì \(x>0\))
Vậy đường cao của hình thang là \(2\sqrt{5}cm\).
Câu 11.11.
Kẻ \(AE\perp AC,E\in CD\).
Khi đó \(AE//BD,AB//DE\)nên \(ABDE\)là hình bình hành.
Suy ra \(AE=BD=15\left(cm\right)\).
Kẻ đường cao \(AH\perp CD\)suy ra \(AH=12\left(cm\right)\).
Xét tam giác \(AEC\)vuông tại \(A\)đường cao \(AH\):
\(\frac{1}{AH^2}=\frac{1}{AE^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{AC^2}=\frac{1}{AH^2}-\frac{1}{AE^2}=\frac{1}{12^2}-\frac{1}{15^2}=\frac{1}{400}\)
\(\Rightarrow AC=20\left(cm\right)\)
\(S_{ABCD}=\frac{1}{2}AC.BD=\frac{1}{2}.15.20=150\left(cm^2\right)\),
Câu 3:
Ta có: \(A=x^2+6x+10\)
\(\Rightarrow A=x^2+2.3.x+3^2+1\)
\(\Rightarrow A=\left(x+3\right)^2+1\)
Lại có: \(\left(x+3\right)^2\ge0\)
\(\Rightarrow A=\left(x+3\right)^2+1\ge1\)
Vậy \(MIN_A=1\) khi \(x=-3\)
Câu 6:
Ta có: \(x^3+8-\left(x+2\right)\left(x^2+3x+3\right)=0\\ < =>\left(x+2\right)\left(x^2-2x+4\right)-\left(x+2\right)\left(x^2+3x+3\right)=0\\ < =>\left(x+2\right)\left(x^2-2x+4-x^2-3x-3\right)=0\\ < =>\left(x+2\right)\left(1-5x\right)=0\\ \)
+) x+2=0 <=>x= -2
+) 1-5x=0 <=>x= \(\frac{1}{5}\)
Vậy: tập nghiệm của pt là S= {-2; \(\frac{1}{5}\)}.
Tổng các nghiệm:
-2+\(\frac{1}{5}=-\frac{9}{5}\)