1/ Tìm các số thực không âm a và b thỏa mãn:
\(\left(a^2+b+\frac{3}{4}\right).\left(b^2+a+\frac{3}{4}\right)=\left(2a+\frac{1}{2}\right)\left(2b+\frac{1}{2}\right)\)
2/ Cho a, b là các số thực khác 0. Biết rằng phương trình \(a\left(x-a\right)^2+b\left(x-b\right)^2=0\) có nghiệm duy nhất. Chứng minh \(\left|a\right|=\left|b\right|\)
2/ \(a\left(x-a\right)^2+b\left(x-b\right)^2=0\)
\(\Leftrightarrow\left(a+b\right)x^2-2\left(a^2+b^2\right)x+a^3+b^3=0\)
Với a = - b thì x = 0
Với a \(\ne\) - b thì ta có
\(\Delta'=\left(a^2+b^2\right)^2-\left(a+b\right)\left(a^3+b^3\right)=0\)
\(\Leftrightarrow-ab\left(a-b\right)^2=0\)
\(\Leftrightarrow a=b\)
Vậy ta có ĐPCM