Cho \(A=\left(2-1\frac{1}{4}\right)\left(2-1\frac{1}{9}\right)\left(2-1\frac{1}{16}\right)...\left(2-1\frac{1}{400}\right)\)
Rút gọn A.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\frac{399}{400}\Rightarrow A=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{19.21}{20.20}\Rightarrow\frac{1.2.3...19}{2.3.4...20}.\frac{3.4.5...21}{2.3.4...20}\) \(\Rightarrow A=\frac{1}{20}.\frac{21}{2}=\frac{21}{40}\)
1, =\(\frac{2\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}\right)}{4\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}\right)}=\frac{1}{2}\)
2, A=\(\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{99}{100}\)
= \(\frac{1\cdot2\cdot3\cdot....\cdot99}{2\cdot3\cdot4\cdot...\cdot100}=\frac{1}{100}\)
Vậy ......
hok tốt
\(A=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{n^2}\right)\)
\(=\left(\frac{2^2-1}{2^2}\right)\left(\frac{3^2-1}{3^2}\right)\left(\frac{4^2-1}{4^2}\right)...\left(\frac{n^2-1}{n^2}\right)\)
\(=\text{[}\frac{\left(2-1\right)\left(2+1\right)}{2^2}\text{]}.\text{[}\frac{\left(3-1\right)\left(3+1\right)}{3^2}\text{]}.\text{[}\frac{\left(4-1\right)\left(4+1\right)}{4^2}\text{]}...\text{[}\frac{\left(n-1\right)\left(n+1\right)}{n^2}\text{]}\)
\(=\left(\frac{1.3}{2^2}\right).\left(\frac{2.4}{3^2}\right).\left(\frac{3.5}{4^2}\right)...\text{[}\frac{\left(n-1\right)\left(n+1\right)}{n^2}\text{]}\)
\(=\frac{\text{[}1.2.3...\left(n-1\right)\text{]}.\text{[}3.4.5...\left(n+1\right)\text{]}}{\text{[}2.3.4...n\text{]}.\text{[}2.3.4...n\text{]}}\)
\(=\frac{1}{n}.\frac{n+1}{2}\)
\(=\frac{n+1}{2n}\)
2.\(B=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.......\frac{49}{50}=\frac{1}{50}\)