Cho tam giác ABC có đường cao ha, hb, hc tỉ lệ thuận với ba số 4;5;6 và chu vi tam giác đó là 37cm. Tính độ dài mỗi cạnh
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi độ dai 3 cạnh là a, b, c.
Theo đề bài, ta có:
a\(\frac{a}{4}=\frac{b}{5}=\frac{c}{6}\)
gọi ba cạnh của tam giác làa;b;ccm(a;b;c>0)
thèo bài ra có chu vi tam giác là 37cm
=>a+b+c=37(1)
:ba đường cao tỉ lệ với 4;5;6
=>ha/4=hb/5=hc/6
đặt ha/4=hb/5=hc/6=k
=>ha=4k
hb=5k
hc=6k
có diện tích tam giác =ha.a=hb.b=hc.c
thay k vào ct:4k.a=5k.b=6k.c
<=>4a=5b=6c
<=>4a/60=5b/60=6c/60
<=>a/15=b/12=c/10(2)
từ 1,2
áp dụng t/c DTSBN
a/15=b/12=c/10=a+b+c/15+12+10=37/37=1
suy ra:a=15;b=12;c=10(tmđk)
vậy độ dài cạnh nhỏ nhất là 10cm
2:
a: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có
góc HAB=góc HCA
=>ΔHAB đồng dạng với ΔHCA
=>HA/HC=HB/HA
=>HA^2=HB*HC
b: BC=4+9=13cm
AH=căn 4*9=6cm
S ABC=1/2*6*13=39cm2
2S(ABC)=ha.a=hb.b=hc.c suy ra 1/ha+1/hb+1/hc=a/2S+b/2S+c/2S=1/2S .(a+b+c)=1/r(a+b+c) .(a+b+c) =1/r (đpcm) (vì 2S=r(a+b+c))
Giải:
Gọi 3 cạnh tương ứng của 3 đường cao \(h_a,h_b,h_c\) là a, b, c \(\left(a,b,c>0\right)\)
Ta có: \(\frac{a.h_a}{2}=\frac{b.h_b}{2}=\frac{c.h_c}{2}\)
\(\Rightarrow a.h_a=b.h_b=c.h_c\)
\(\Rightarrow4a.\frac{h_a}{4}=5b.\frac{h_b}{5}=6c.\frac{h_c}{6}\)
Mà \(\frac{h_a}{4}=\frac{h_b}{5}=\frac{h_c}{6}\)
\(\Rightarrow4a=5b=6c\)
\(\Rightarrow\frac{a}{\frac{1}{4}}=\frac{b}{\frac{1}{5}}=\frac{c}{\frac{1}{6}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{\frac{1}{4}}=\frac{b}{\frac{1}{5}}=\frac{c}{\frac{1}{6}}=\frac{a+b+c}{\frac{1}{4}+\frac{1}{5}+\frac{1}{6}}=\frac{37}{\frac{37}{60}}=60\)
\(\left\{\begin{matrix}\frac{a}{\frac{1}{4}}=60\\\frac{b}{\frac{1}{5}}=60\\\frac{c}{\frac{1}{6}}=60\end{matrix}\right.\Rightarrow\left\{\begin{matrix}a=15\\b=12\\c=10\end{matrix}\right.\)
Vậy độ dài 3 cạnh của t/g lần lượt là 15, 12, 10
gọi 3 đường cao ha ; hb;hc lần lượt là a, b, c
Theo bài ra ta có:
\(\frac{a}{4}=\frac{b}{5}=\frac{c}{6}\) và a+b+c=37
Áp dụng t/c dãy tỉ số = nhau ta có
\(\frac{a}{4}=\frac{b}{5}=\frac{c}{6}=\frac{a+b+c}{4+5+6}=\frac{37}{15}\)
=>\(\frac{a}{4}=\frac{37}{15}=>a=\frac{37.4}{15}\)=>a=\(\frac{148}{15}\)
\(\frac{b}{5}=\frac{37}{15}=>b=\frac{37.5}{15}=>b=\frac{37}{3}\)
\(\frac{c}{6}=\frac{37}{15}=>c=\frac{37.6}{15}=>c=\frac{222}{15}\)
Vậy độ dài 3 đường cao của tam giác ABC là \(\frac{148}{15}cm;\frac{37}{3}cm;\frac{222}{15}cm\)