cho dãy số (un) với un=\(\frac{n}{3^n}\).
a)chứng minh rằng \(\frac{u_{n+1}}{u_n}\le\frac{2}{3}\) với mọi n .
b) bằng phương pháp quy nạp , chứng minh rằng 0≤un≤\(\left(\frac{2}{3}\right)^n\) với mọi n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài không rõ ràng. n ở đây là tự nhiên, nguyên hay là chơi luôn cả R
Ta có: \({u_n} = \frac{{{n^2} + 1}}{{2{n^2} + 4}} = \frac{1}{2}\left( {\frac{{{n^2} + 1}}{{{n^2} + 2}}} \right) = \frac{1}{2}\left( {1 - \frac{1}{{{n^2} + 2}}} \right) < \frac{1}{2}\).
Ta lại có: \[{u_n} = \frac{{{n^2} + 1}}{{2{n^2} + 4}} > 0\]
Do đó \(0 < {u_n} < \frac{1}{2}\).
Vì vậy dãy số (un) bị chặn.
a. u1 = - 1, un + 1 = un + 3 với n > 1
u1 = - 1;
u2 = u1 + 3 = -1 + 3 = 2
u3 = u2 + 3 = 2 + 3 = 5
u4 = u3 + 3 = 5 + 3 = 8
u5 = u4 + 3 = 8 + 3 = 11
b. Chứng minh phương pháp quy nạp: un = 3n – 4 (1)
+ Khi n = 1 thì u1 = 3.1 - 4 = -1, vậy (1) đúng với n = 1.
+ Giả sử công thức (1) đúng với n = k > 1 tức là uk = 3k – 4.
+ Ta chứng minh (1) đúng với n= k+ 1 tức là chứng minh: uk+1 = 3(k+1) - 4
Thật vậy,ta có : uk + 1 = uk + 3 = 3k – 4 + 3 = 3(k + 1) – 4.
⇒ (1) đúng với n = k + 1
Vậy (1) đúng với ∀ n ∈ N*.
Ta có:
\(\begin{array}{l}\frac{{{u_{n + 1}}}}{{{u_n}}} > 1\,\,\,\forall n \in {\mathbb{N}^*}\\ \Leftrightarrow {u_{n + 1}} > {u_n}\,\,\,\forall n \in {\mathbb{N}^*}\end{array}\)
=> Luôn đúng
\(\frac{u_{n+1}}{u_n}=\frac{\frac{n+1}{3^{n+1}}}{\frac{n}{3^n}}=\frac{3^n.\left(n+1\right)}{n.3^{n+1}}=\frac{n+1}{3.n}=\frac{1}{3}+\frac{1}{3n}\le\frac{1}{3}+\frac{1}{3}=\frac{2}{3}\)