Cho tam giác ABC,trên cạnh BC lấy D sao cho CD=1/3 BC.Từ B và C vẽ BE và CF vuông góc với AD.Chứng minh DF= 1/2 DE.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lấy M là trung điểm của BD => BM=MD=DC
Dựng MN ⊥AD
Xét 2 tam giác vuông: ΔCFD và ΔMND có:
góc CDF = góc MDN (2 góc đối đỉnh)
MD=DC (cách dựng)
=> ΔCFD = ΔMND (cạnh huyền-góc nhọn)
=> DF=DN (*)
Mặt khác, ΔBED vuông tại E có: M là trung điểm => BM=ME=MD => ΔΔBMD cân => MN là đường cao đồng thời là đường trung tuyến => EN=ND (**)
Từ (*) và (**) => DF=DN=NE
=> DF=1/2DE (ĐPCM)
Lấy M là trung điểm của BD => BM=MD=DC
Dựng MN ⊥AD
Xét 2 tam giác vuông: ΔCFD và ΔMND có:
góc CDF = góc MDN (2 góc đối đỉnh)
MD=DC (cách dựng)
=> ΔCFD = ΔMND (cạnh huyền-góc nhọn)
=> DF=DN (*)
Mặt khác, ΔBED vuông tại E có: M là trung điểm => BM=ME=MD => ΔΔBMD cân => MN là đường cao đồng thời là đường trung tuyến => EN=ND (**)
Từ (*) và (**) => DF=DN=NE
=> DF=1/2DE (ĐPCM)
Lấy M là trung điểm của BD => BM=MD=DC
Dựng MN ⊥AD
Xét 2 tam giác vuông: ΔCFD và ΔMND có:
ˆCDF=ˆMDNCDF^=MDN^(góc đối đỉnh)
MD=DC (cách dựng)
=> ΔCFD = ΔMND (cạnh huyền-góc nhọn)
=> DF=DN (*)
Mặt khác, ΔBED vuông tại E có: M là trung điểm => BM=ME=MD => ΔΔBMD cân => MN là đường cao đồng thời là đường trung tuyến => EN=ND (**)
Từ (*) và (**) => DF=DN=NE
=> DF=1/2DE (ĐPCM)
Lấy M là trung điểm của BD => BM=MD=DC
Dựng MN ⊥AD
Xét 2 tam giác vuông: ΔCFD và ΔMND có:
CDF^=MDN^(góc đối đỉnh)
MD=DC (cách dựng)
=> ΔCFD = ΔMND (cạnh huyền-góc nhọn)
=> DF=DN (*)
Mặt khác, ΔBED vuông tại E có: M là trung điểm => BM=ME=MD => ΔΔBMD cân => MN là đường cao đồng thời là đường trung tuyến => EN=ND (**)
Từ (*) và (**) => DF=DN=NE
=> DF=1/2DE (ĐPCM)
Lấy M là trung điểm của BD => BM=MD=DC
Dựng MN ⊥AD
Xét 2 tam giác vuông: ΔCFD và ΔMND có:
góc CDF = góc MDN (2 góc đối đỉnh)
MD=DC (cách dựng)
=> ΔCFD = ΔMND (cạnh huyền-góc nhọn)
=> DF=DN (*)
Mặt khác, ΔBED vuông tại E có: M là trung điểm => BM=ME=MD => ΔΔBMD cân => MN là đường cao đồng thời là đường trung tuyến => EN=ND (**)
Từ (*) và (**) => DF=DN=NE
=> DF=1/2DE (ĐPCM)
Lấy M là trung điểm của BD => BM=MD=DC
Dựng MN ⊥AD
Xét 2 tam giác vuông: ΔCFD và ΔMND có:
góc CDF = góc MDN (2 góc đối đỉnh)
MD=DC (cách dựng)
=> ΔCFD = ΔMND (cạnh huyền-góc nhọn)
=> DF=DN (*)
Mặt khác, ΔBED vuông tại E có: M là trung điểm => BM=ME=MD => ΔΔBMD cân => MN là đường cao đồng thời là đường trung tuyến => EN=ND (**)
Từ (*) và (**) => DF=DN=NE
=> DF=1/2DE (ĐPCM)
Lấy M là trung điểm của BD => BM=MD=DC
Dựng MN ⊥AD
Xét 2 tam giác vuông: ΔCFD và ΔMND có:
góc CDF = góc MDN (2 góc đối đỉnh)
MD=DC (cách dựng)
=> ΔCFD = ΔMND (cạnh huyền-góc nhọn)
=> DF=DN (*)
Mặt khác, ΔBED vuông tại E có: M là trung điểm => BM=ME=MD => ΔΔBMD cân => MN là đường cao đồng thời là đường trung tuyến => EN=ND (**)
Từ (*) và (**) => DF=DN=NE
=> DF=1/2DE (ĐPCM)
CHÚ Ý: đề em bị sai nhé, anh đoán đề chính xác sẽ giống hình này
Lấy M là trung điểm của BD => BM=MD=DC
Dựng MN \(⊥\)AD
Xét 2 tam giác vuông: \(\Delta\)CFD và \(\Delta\)MND có:
\(\widehat{CDF}=\widehat{MDN}\)(góc đối đỉnh)
MD=DC (cách dựng)
=> \(\Delta\)CFD = \(\Delta\)MND (cạnh huyền-góc nhọn)
=> DF=DN (*)
Mặt khác, \(\Delta\)BED vuông tại E có: M là trung điểm => BM=ME=MD => \(\Delta\)BMD cân => MN là đường cao đồng thời là đường trung tuyến => EN=ND (**)
Từ (*) và (**) => DF=DN=NE
=> DF=\(\frac{1}{2}\)DE (ĐPCM)
Lấy M là trung điểm của BD => BM=MD=DC
Dựng MN ⊥AD
Xét 2 tam giác vuông: ΔCFD và ΔMND có:
góc CDF = góc MDN (2 góc đối đỉnh)
MD=DC (cách dựng)
=> ΔCFD = ΔMND (cạnh huyền-góc nhọn)
=> DF=DN (*)
Mặt khác, ΔBED vuông tại E có: M là trung điểm => BM=ME=MD => ΔΔBMD cân => MN là đường cao đồng thời là đường trung tuyến => EN=ND (**)
Từ (*) và (**) => DF=DN=NE
=> DF=1/2DE (ĐPCM)
Lấy M là trung điểm của BD => BM=MD=DC
Dựng MN ⊥AD
Xét 2 tam giác vuông: ΔCFD và ΔMND có:
góc CDF = góc MDN (2 góc đối đỉnh)
MD=DC (cách dựng)
=> ΔCFD = ΔMND (cạnh huyền-góc nhọn)
=> DF=DN (*)
Mặt khác, ΔBED vuông tại E có: M là trung điểm => BM=ME=MD => ΔΔBMD cân => MN là đường cao đồng thời là đường trung tuyến => EN=ND (**)
Từ (*) và (**) => DF=DN=NE
=> DF=1/2DE (ĐPCM)