K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2017

\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

\(\Leftrightarrow\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\ge4\)

Áp dụng BĐT Cô - si

\(\Rightarrow\left\{\begin{matrix}x+y\ge2\sqrt{xy}\\\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{xy}}\end{matrix}\right.\)

\(\Rightarrow\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\ge4\sqrt{xy.\frac{1}{xy}}\)

\(\Rightarrow\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\ge4\) ( đpcm )

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)

\(\Leftrightarrow\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)

Áp dụng BĐT Cô - si

\(\Rightarrow\left\{\begin{matrix}x+y+z\ge3\sqrt{xyz}\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt{\frac{1}{xyz}}\end{matrix}\right.\)

\(\Rightarrow\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\sqrt{xyz.\frac{1}{xyz}}\)

\(\Rightarrow\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\) ( đpcm )

21 tháng 1 2017

cũng đúng nhưng mình chưa hoc BĐT Cô-si

30 tháng 4 2020

bạn làm được câu 1 chưa ạ chụp cho mình

4 tháng 3 2019

ko hiểu

AH
Akai Haruma
Giáo viên
14 tháng 10 2018

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\(\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)(x+x+y+z)\geq (1+1+1+1)^2\)

\(\Rightarrow \frac{2}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{16}{2x+y+z}\)

Hoàn toàn tương tự:

\(\frac{1}{x}+\frac{2}{y}+\frac{1}{z}\geq \frac{16}{x+2y+z}\)

\(\frac{1}{x}+\frac{1}{y}+\frac{2}{z}\geq \frac{16}{x+y+2z}\)

Cộng theo vế các BĐT vừa thu được:

\(\Rightarrow 4\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\geq 16\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\)

\(\Rightarrow 16\geq 16\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\)

\(\Rightarrow \frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\leq 1\)

Ta có đpcm.

14 tháng 10 2018

Ta có :

\(\dfrac{1}{2x+y+z}=\dfrac{16}{16\left(x+x+y+z\right)}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

\(\dfrac{1}{x+2y+z}=\dfrac{16}{16\left(x+y+y+z\right)}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

\(\dfrac{1}{x+y+2z}=\dfrac{16}{16\left(x+y+z+z\right)}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{z}\right)\)

Cộng từng vế của BĐT ta được :

\(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\le\dfrac{1}{16}\left(\dfrac{4}{x}+\dfrac{4}{y}+\dfrac{4}{z}\right)=\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=1\)

Vậy BĐT đã được chứng minh !

11 tháng 12 2016

Ta có:

\(\frac{x}{x+1}=1-\frac{1}{x+1}\)

\(\frac{y}{y+1}=1-\frac{y}{y+1}\)

\(\frac{z}{z+4}=1-\frac{4}{z+4}\)

\(\Rightarrow\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+4}=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{4}{z+4}\right)\)

\(\le\left[3-\left(\frac{4}{x+y+2}+\frac{4}{z+4}\right)\right]\le\left(3-\frac{16}{x+y+z+6}\right)=3-\frac{16}{6}=\frac{1}{3}\)

 

 

 

3 tháng 6 2019

Ta có : \(8^x+8^x+8^2\ge3\sqrt[3]{8^x.8^x.8^2}=12.4^x\)

\(8^y+8^y+8^2\ge3\sqrt[3]{8^y.8^y.8^2}=12.4^y\)

\(8^z+8^z+8^2\ge3\sqrt[3]{8^z.8^z.8^2}=12.4^z\)

\(8^x+8^y+8^z\ge3\sqrt[3]{8^x.8^y.8^z}=3\sqrt[3]{8^6}=192\)

Cộng các vế , ta được :

\(3\left(8^x+8^y+8^z+64\right)\ge3\left(4^{x+1}+4^{y+1}+4^{z+1}+64\right)\)

hay \(8^x+8^y+8^z\ge4^{x+1}+4^{y+1}+4^{z+1}\)