Cho tam giác MNP cân tại N. Trên tia đối của tia MP lấy điểm I, trên tia đối của tia PM lấy điểm K sao cho MI = PK.
a) Chứng minh tam giác NMI = tam giác NPK
b) Vẽ NH vuông góc với MP. Chứng minh tam giác NHP = tam giác NHM và HM = HP
c) tam giác NIK là tam giác gì? Vì sao
a) Vì t/g MNP cân tại N => góc NMP = góc NPM
Mà: góc NMP + góc NMI = 180o (kề bù)
góc NPM + góc NPK = 180o (kề bù)
Suy ra: góc NMI = góc NPK
Xét hai tam giác NMI và NPK có:
NM = NP (do t/g MNP cân tại N)
Góc NMI = góc NPK (cmt)
MI = PK (gt)
Vậy: t/g NMI = t/g NPK (c - g - c)
b) Xét hai tam giác vuông NHP và NHM có:
NH: cạnh chung
NP = NM (do t/g MNP cân tại N)
Vậy: t/g NHP = t/g NHM (ch - cgv)
Suy ra: HM = HP (hai cạnh tương ứng)
c) Vì t/g NMI = t/g NPK (cmt)
Suy ra: NI = NK (hai cạnh tương ứng)
Do đó: t/g NIK là tam giác cân.
a.Vì \(\Delta\)NMP cân tại N nên NM=NP và góc NMP bằng gócNPM Vì góc NMP bằng góc NPM =>180 độ -góc NMP =180 độ - NPM => NMI =NPK Xét \(\Delta\)NMIvà \(\Delta NPK\) MI=PK NMI=NPK NM=NP =>\(\Delta\)NMI=\(\Delta\)NPK b. Xét tam giác NHM vuông tại H và tam giác NHP vuông tại H có NM=NP NMH=NPH =>tam giác NHM = tam giác NHP =>HM=HP(cặp cạnh tương ứng ) c,Theo câu a tam giác NMI=tam giác NPK nên NI=NK(cặp cạnh tương ứng) Trong tam giác NIK có NI=NK => tam giác NIK là tam giác cân tại N