cho 3 số hữu tỉ x;y;z đôi một khác nhau. Chứng minh \(\frac{1}{\left(x-y\right)^2}+\frac{1}{\left(y-z\right)^2}+\frac{1}{\left(z-x\right)^2}\)
là bình phương của 1 số hữu tỉ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Để x là số dương thì 2a-5<0
hay \(a< \dfrac{5}{2}\)
b: Để x là số âm thì 2a-5>0
hay \(a>\dfrac{5}{2}\)
c: Để x=0 thì 2a-5=0
hay \(a=\dfrac{5}{2}\)
a, Ta có x là số hữu tỉ dương tức là : \(\frac{2a-5}{-3}>0\) hay a > \(\frac{5}{2}\)
b, Ta có x là số hữu tỉ âm tức là : \(\frac{2a-5}{-3}< 0\)hay a < 5/2
c,Ta có x không là số hữu tỉ âm và cũng không phải là số hữu tỉ dương suy ra x = 0 hay \(\frac{2a-5}{-3}=0\) nên a = 5/2
Để x không là sốn hữu tỉ âm ta có :
\(x>0\Rightarrow\frac{a-3}{5}>0\Rightarrow x>\frac{3-3}{5}\Rightarrow a>3\)
Để x không là số hữu tỉ dương ta có :
\(x< 0\Rightarrow\frac{a-3}{5}< 0\Rightarrow x< \frac{3-3}{5}\Rightarrow a< 3\)
Từ đó a sẽ bằng 3 vì :
\(\frac{a-3}{5}=0\Rightarrow x=\frac{3-3}{5}\Rightarrow a=3\)
a; Để x là số dương
=> a - 3 / 2 > 0 => a - 3 > 0 => a > 3
VẬy a > 3 => x dương
b; x la số âm
=> a - 3 / 2 < 0 => a - 3< 0 => a < 3
VẬy a < 3 => x âm
c,X không phải sô hữu tỉ âm và dương => a - 3 / 2 = 0
=> a - 3 = 0 => a = 3
Vậy a = 0 thì .........
Đúng cho mình nha
a) Để x là số hữu tỉ dương
=> \(\frac{2m+3}{6}>0\) => \(2m+3>0\) => \(m>0\)
Vậy \(m>0\) => x là số hữu tỉ dương
b) Để x là số hữu tỉ âm
=> \(\frac{2m+3}{6}< 0\) => \(2m+3< 0\) => \(m< 0\)
Vậy \(m< 0\) => x là số hữu tỉ âm
c) Để x không phải là số hữu tỉ dương cũng không là số hữu tỉ âm
=> \(\frac{2m+3}{6}=0\) => \(2m+3=0\) => \(m=0\)
Vậy \(m=0\) => x không phải là số hữu tỉ dương cũng không là số hữu tỉ âm
Chúc bạn may mắn !
a) \(\dfrac{-5}{a-3}\left(a\inℤ\right)\) là số hữu tỷ \(\Leftrightarrow a-3\ne0\Leftrightarrow a\ne3\)
b) \(\dfrac{-5}{a-3}\left(a\inℤ\right)\) là số hữu tỷ dương \(\Leftrightarrow a-3< 0\Leftrightarrow a< 3\)
c) \(\dfrac{-5}{a-3}\left(a\inℤ\right)\) là số hữu âm \(\Leftrightarrow a-3>0\Leftrightarrow a>3\)
d) \(\dfrac{-5}{a-3}\left(a\inℤ\right)\) là số nguyên đương
\(\Leftrightarrow a-3\in B\left(5\right)=\left\{-1;-5\right\}\)
\(\Leftrightarrow a\in\left\{2;-2\right\}\)Lời giải:
Đặt $x+\frac{2}{3}=\frac{a}{b}$ với $a,b$ là số nguyên, $b\neq 0$
$\Rightarrow x=\frac{a}{b}-\frac{2}{3}=\frac{3a-2b}{3b}$
Thấy rằng $3a-2b\in\mathbb{Z}$ với mọi $a,b$ nguyên, $3b\in\mathbb{Z}\neq 0$ với mọi số nguyên $b$ khác $0$
$\Rightarrow x$ là số hữu tỉ.
\(x=\frac{a-3}{2}\) => a>3 để x là số hữu tỉ dương
a<3 để x là số hữu tỉ âm
a=3 để x là số hữu tỉ âm cũng không là số hữu tỉ dương
nhớ **** cho mình nha
clink vào câu hỏi tương tự