bạn nào giúp mình với
tính giá trị của biểu thức B =\(\frac{2a-b}{3a-b}\)+\(\frac{5b-a}{3a+b}\)
biết \(\left\{\begin{matrix}10a^2-3b^2+5ab=0\\9a^2-b^2\ne0\end{matrix}\right.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{\left(2a-b\right)\left(3a+b\right)+\left(5b-a\right)\left(3a-b\right)}{9a^2-b^2}=\frac{3a^2+15ab-6b^2}{9a^2-b^2}\)\(=\frac{3a^2+3\left(3b^2-10a^2\right)-6b^2}{9a^2-b^2}=\frac{-3\left(9a^2-b^2\right)}{9a^2-b^2}=-3\)
\(10a^2-b^2+ab=0\)
\(\Rightarrow10a^2+6ab-5ab-3b^2=0\)
\(\Rightarrow2a\left(5a+3b\right)-b\left(5a+3b\right)=0\)
\(\Rightarrow\left(5a+3b\right)\left(2a-b\right)=0\)
Mà \(b>a>0\Rightarrow5a+3b>0\)
Do đó: \(2a-b=0\Rightarrow2a=b\)
Ta có: \(B=\frac{2a-b}{3a-b}+\frac{5b-a}{3a+b}\)
\(=0+\frac{10a-a}{3a+2a}\) (vì b = 2a)
\(=0+\frac{9}{5}=\frac{9}{5}\)
Vậy \(A=\frac{9}{5}\)
Chúc bạn học tốt.
Theo giả thiết, ta có:
\(10a^2-3b^2+5ab=0\)
nên \(3\left(10a^2-3b^2+5ab\right)=0\)
\(\Leftrightarrow\) \(30a^2-9b^2+15ab=0\)
\(\Leftrightarrow\) \(15ab=-30a^2+9b^2\)
Do đó: \(A=\frac{2a-b}{3a-b}+\frac{5b-a}{3a+b}=\frac{\left(2a-b\right)\left(3a+b\right)+\left(5b-a\right)\left(3a-b\right)}{\left(3a-b\right)\left(3a+b\right)}=\frac{3a^2+15ab-6b^2}{9a^2-b^2}=\frac{3a^2+\left(-30a^2+9b^2\right)-6b^2}{9a^2-b^2}\)
\(A=\frac{-27a^2+3b^2}{9a^2-b^2}=\frac{-3\left(9a^2-b^2\right)}{9a^2-b^2}=-3\) (do \(9a^2-b^2\ne0\) )
ĐK \(9a^2-b^2\ne0\)
Ta có B =\(\frac{2a-b}{3a-b}+\frac{5b-a}{3a+b}=\frac{\left(2a-b\right)\left(3a+b\right)+\left(5b-a\right)\left(3a-b\right)}{\left(3a+b\right)\left(3a-b\right)}\)
=\(\frac{6a^2+2ab-3ab-b^2+15ab-5b^2-3a^2+ab}{9a^2-b^2}\)
=\(\frac{3a^2+15ab-6b^2}{9a^2-b^2}=\frac{3\left(a^2+5ab-2b^2\right)}{9a^2-b^2}\)
Từ \(10a^2-3b^2+5ab=0\Rightarrow5ab=3b^2-10a^2\)
\(\Rightarrow B=\frac{3\left(a^2+3b^2-10a^2-2b^2\right)}{9a^2-b^2}=\frac{3\left(-9a^2+b^2\right)}{9a^2-b^2}=-3\)
Vậy B =-3
\(B=\frac{2a-b}{3a-b}+\frac{5b-a}{3a+b}=\frac{3a^2+15ab-6b^2}{9a^2-b^2}\)
\(=\frac{3a^2+3\left(3b^2-10a^2\right)-6b^2}{9a^2-b^2}\left(5ab=3b^2-10a^2\right)\)
\(=\frac{-3\left(9a^2-b\right)}{9a^2-b^2}=-3\)
Từ \(10a^2-3b^2+5ab=0\)
\(\Rightarrow10\left(a+\frac{b}{4}\right)^2-\frac{29b^2}{8}=0\)
\(\Rightarrow a=b=0\)
Thay vào ....