Cho x>0 . Tìm GTNN của S= 2x+ 1/x^2
Giúp mình nha!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho x,y,z >0.Tìm GTNN của M=\(\frac{1}{6x}+\frac{2}{3y}+\frac{3}{2x}\)
Mình đang cần gấp giúp với!!!!
1. x≥1 <=> \(\frac{1}{x}\le1\Leftrightarrow\frac{1}{x}+1\le2\Leftrightarrow A\le2\Rightarrow MaxA=2\Leftrightarrow x=1\)
2. Áp dụng bđt cosi cho x>0. ta có: \(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\Leftrightarrow P\ge2\Rightarrow MinP=2\Leftrightarrow x=\frac{1}{x}\Leftrightarrow x=1\)
3: \(A=\frac{x^2+x+4}{x+1}=\frac{\left(x^2+2x+1\right)-\left(x+1\right)+4}{x+1}=x+1-1+\frac{4}{x+1}\)
áp dụng cosi cho 2 số dương ta có: \(x+1+\frac{4}{x+1}\ge2\sqrt{x+1.\frac{4}{x+1}}=2\Leftrightarrow A+1\ge2\Rightarrow A\ge3\Rightarrow MinA=3\Leftrightarrow x+1=\frac{4}{x+1}\Leftrightarrow x=1\)
câu 1
x^2 -5x +y^2+xy -4y +2014
=(y^2+xy +1/4x^2) -4(y+1/2x)+4 +3/4x^2-3x+2010
=(y+1/2x-2)^2 +3/4(x^2-4x+4)+2007
=(y+1/2x-2)^2 +3/4(x-2)^2 +2007
GTNN là 2007<=> x=2 và y=1
Ta có \(S=\frac{2x+1}{x^2}=\frac{x^2+2x+1-x^2}{x^2}=\frac{\left(x+1\right)^2}{x^2}-1\)
Ta thấy \(\left(x+1\right)^2\ge0;x^2\ge0\)với mọi x \(\Rightarrow S\ge-1\)với mọi x
dấu bằng xảy ra khi \(\left(x+1\right)^2=0\Leftrightarrow x=-1\)
Điều kiện xác định x\(\ne\)0 nên x=-1 thỏa mãn.
Vậy minS=-1 khi và chỉ khi x=-1