cho số thực x>-1 . chứng minh rằng : (1+x)n\(\ge\)1+nx với mọi số nguyên dương n .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giao lưu:
\(\left\{\begin{matrix}x>-1\\n\in N\\\left(1+x\right)^n\ge\left(1+nx\right)\end{matrix}\right.\)(I)
-khi n=0 ta có 1=1 vẫn đúng => đúng với mọi n là số không âm {sao đề loại n=0 đi nhỉ}
-với x>-1 => 1+x> 0
vói x=0 ta có 1^n>=1 hiển nhiên đúng
{Ta cần c/m với mọi x khác 0 và x>-1}
C/M: Bằng quy nạp
với n=1 ta có: (1+x)>=(1+x) hiển nhiên.
G/s: (I) đúng với n=k tức là (1+x)^k>=(1+kx)
Ta cần c/m (I) đúng với (k+1)
với n=(k+1) ta có \(\left(1+x\right)^{k+1}\ge\left[1+\left(k+1\right)x\right]\)(*)
\(\Leftrightarrow\left(x+1\right)\left(1+x\right)^k\ge1+kx+x\Leftrightarrow\left(x+1\right)\left(1+kx\right)\ge1+kx+x\)
\(\Leftrightarrow\left(1+kx\right)+x+kx^2\ge1+kx+x\Leftrightarrow kx^2\ge0\)(**)
Mọi phép biến đổi là tương đương (**) đúng => (*) đúng
=> dpcm.
Giao lưu:
\(\left\{\begin{matrix}x>-1\\n\in N\\\left(1+x\right)^n\ge1+nx\end{matrix}\right.\) (I)
\(x>-1\Rightarrow\left(1+x\right)>1\Rightarrow\left(1+x\right)^n>1voi\forall n\in N\)
với x=0 1^n>=1 luôn đúng ta cần c/m với x khác 0
\(\left\{\begin{matrix}n=1\Rightarrow\left(1+x\right)^1\ge\left(1+x\right)...\left\{dung\right\}\\n=2\Rightarrow\left(1+x\right)^2\ge\left(1+2x\right)...\left\{dung\right\}\\n=2\Rightarrow\left(1+x\right)^3\ge\left(1+3x\right)...\left\{dung\right\}\end{matrix}\right.\)
C/m bằng phản chứng:
Giả /sủ từ giá trị (k+1) nào đó ta có điều ngược lại (*)
Nghĩa là: khi n đủ lớn BĐT (I) không đúng nữa. và chỉ đúng đến (n=k)(**)
Như vậy coi (**) đúng và ta chứng minh (*) là sai .
với n=k ta có: \(\left(1+x\right)^k\ge\left(1+kx\right)\) (1) theo (*)
vói n=(k+1) ta có theo (**)
\(\left(1+x\right)^{k+1}\le\left[1+\left(k+1\right)x\right]\Leftrightarrow\left(1+x\right)\left(1+x\right)^k\le\left[1+kx+x\right]\)(2)
chia hai vế (2) cho [(1+x)>0 {do x>-1}] BĐT không đổi
\(\left(2\right)\Leftrightarrow\left(1+x\right)^k\le\frac{\left[\left(1+kx\right)+x\right]}{1+x}\) từ (1)=> \(\frac{1+kx+x}{x+1}\ge\left(1+x\right)^k\ge\left(1+kx\right)\)
\(\Rightarrow\frac{\left(1+kx\right)+x}{x+1}\ge\left(1+kx\right)\Leftrightarrow\left(1+kx\right)+x\ge\left(1+kx\right)+x+kx^2\)(3)
\(\left(3\right)\Leftrightarrow\left[\left(1+kx\right)+x\right]-\left[\left(1+kx\right)+x\right]\ge kx^2\)\(\Leftrightarrow0\ge kx^2\) (***)
{(***) đúng chỉ khi x=0 ta đang xét x khác 0} vậy (***) sai => (*) sai
ĐIều giả sử sai--> không tồn tại giá trị (k+1) --> làm BĐT đổi chiều:
=> đpcm
Lời giải:
Dùng quy nạp:
-Với $n=1$ thì $(1+x)^n=1+x=1+nx$
-Với $n=2$ : có $(1+x)^2=1+2x+x^2\geq 1+2x$ do $x^2\geq 0$ với mọi $x\in\mathbb{R}$
.......................................
-Giả sử bài toán đúng đến $n=k$, ta cần CM $(1+x)^{k+1}\geq 1+(k+1)x$
Ta có \((1+x)^{k+1}=(1+x)(1+x)^k\geq (1+x)(1+kx)=1+kx+x+kx^2\geq 1+kx+x=1+(k+1)x\) Do đó ta có đpcm
a) 9x2 - 36
=(3x)2-62
=(3x-6)(3x+6)
=4(x-3)(x+3)
b) 2x3y-4x2y2+2xy3
=2xy(x2-2xy+y2)
=2xy(x-y)2
c) ab - b2-a+b
=ab-a-b2+b
=(ab-a)-(b2-b)
=a(b-1)-b(b-1)
=(b-1)(a-b)
P/s đùng để ý đến câu trả lời của mình
C1:Biến đổi tương đương
\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\Leftrightarrow\dfrac{x}{xy}+\dfrac{y}{xy}\ge\dfrac{4}{x+y}\)
\(\Leftrightarrow\dfrac{x+y}{xy}\ge\dfrac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow x^2+y^2+2xy\ge4xy\Leftrightarrow x^2+y^2-2xy\ge0\Leftrightarrow\left(x-y\right)^2\ge0\)
C2:Dùng AM-GM
\(x+y\ge2\sqrt{xy}\);\(\dfrac{1}{x}+\dfrac{1}{y}\ge2\sqrt{\dfrac{1}{x}\cdot\dfrac{1}{y}}=2\sqrt{\dfrac{1}{xy}}\)
Nhân theo vế 2 BĐT
\(\left(x+y\right)\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\ge4\sqrt{xy\cdot\dfrac{1}{xy}}=4\Rightarrow\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)
C3:Dùng Cauchy-Schwarz (dạng Engel)
\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{\left(1+1\right)^2}{x+y}=\dfrac{4}{x+y}\)
-3 cách trên đều có dấu "=" khi \(x=y\)