K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2017

Vì M đối xứng với D qua AB(gt), E là giao điểm của DM và AB

\(\Rightarrow\left\{\begin{matrix}DE=ME\\DE\perp AB\end{matrix}\right.\)

Ta có: DE\(\perp\)AB(cmt), AC\(\perp\)AB( vì \(\Delta\)ABC vuông tại A)

\(\Rightarrow DE\)//AC

Xét tứ giác AEDC có DE//AC(cmt), \(\widehat{EAC}=90^0\)

\(\Rightarrow AEDC\) là hình thang vuông

Xét \(\Delta ABC\) có: D là trung điểm của BC(gt)

DE//AC(cmt)

\(\Rightarrow\) AE=BE(Trong một tam giác, đường thẳng đi qua trung điểm một cạnh và song song với cạnh thứ hai thì đi qua trung điểm cạnh còn lại)

Xét tứ giác ADBM có: DE=ME(cmt), AE=BE(cmt)

\(\Rightarrow\)ADBM là hình bình hành

Mà hình bình hành ADBM có: DE\(\perp\)AB(cmt)

\(\Rightarrow\) ADBM là hình thoi

Tứ giác ADBM là hình vuông khi tam giác ABC là tam giác vuông cân

25 tháng 11 2018

a) Ta có: \(\left\{{}\begin{matrix}ED\perp AB\left(gt\right)\\AC\perp AB\left(gt\right)\end{matrix}\right.\)

=> ED // AC

Xét tứ giác EDCA có :

ED // AC (cmt)

=> EDAC là hình thang

\(\widehat{DEA}=90^0\)

=> EDAC là hình thang cân.

b) Xét \(\Delta ABC\) có:

D là trung điểm của của Bc (gt)

ED // AC ( EDCA là hình thang vuông)

=> E là trung điểm của AB.

Xét tứ giác MBDA có:

E là trung điểm của AB (cmt)

E là trung điểm của MD ( M đối xứng D qua E)

=> MBDA là hình bình hành

có BA \(\perp\) MD

=> MBDA là hình thoi.

c) Để tứ giác MBDA là hình vuông

thì \(\widehat{BDA}=90^0\)

Để \(\widehat{BDA}=90^0\) thì

AD \(\perp\) BC

=> AD là đường cao của \(\Delta ABC\)

=> \(\Delta ABC\) phải là tam giác vuông cân ( vuông cân tại A)

chúc bạn học tốt

26 tháng 2 2018

Em tham khảo tại đây nhé.

Câu hỏi của nguuen thi minh tam - Toán lớp 8 - Học toán với OnlineMath

28 tháng 11 2021
Công chúa thủy tế
25 tháng 12 2021

Tứ giác AEDF là hình chữ nhậtundefined

⇒ DE // AC; DF // AB

Trong ∆ ABC, ta có: DB = DC (gt)

Mà DE // AC

Suy ra: AE = EB (tính chất đường trung bình của tam giác)

Lại có: DF // AB và DB = DC

Suy ra: AF = FC (tính chất đường trung bình của tam giác)

Xét tứ giác ADBM, ta có: AE = EB (cmt)

ED = EM (vì AB là trung trực DM)

Suy ra tứ giác ADBM là hình bình hành (vì có 2 đường chéo cắt nhau tại trung điểm của mỗi đường)

Mặt khác: AB ⊥ DM

Vậy hình bình hành ADBM là hình thoi (vì có hai đường chéo vuông góc)

Xét tứ giác ADCN, ta có: AF = FC (cmt)

DF = FN (vì AC là đường trung trực DN)

Suy ra tứ giác ADCN là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm của mỗi đường).

Lại có: AC ⊥ DN

Vậy hình bình hành ADCN là hình thoi (vì có hai đường chéo cắt nhau)

 

26 tháng 2 2018

Em tham khảo tại đây nhé.

Câu hỏi của nguuen thi minh tam - Toán lớp 8 - Học toán với OnlineMath

26 tháng 2 2018

Em tham khảo tại đây nhé.

Câu hỏi của nguuen thi minh tam - Toán lớp 8 - Học toán với OnlineMath