K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2016

đề bài câu d bị sai thì phải

24 tháng 12 2016

câu d đề sai hoàn toàn

25 tháng 12 2016

A B C D

25 tháng 12 2016

a) Xét \(\Delta ADB\)\(\Delta ADC\) ta có:

\(\widehat{BAD}+\widehat{B}+\widehat{BDA}=180^o\)

\(\widehat{DAC}+\widehat{C}+\widehat{CDA}=180^o\)

\(\widehat{B}=\widehat{C}\left(gt\right)\)(*)

\(\widehat{BAD}=\widehat{DAC}\) (AD là phân giác)

\(\Rightarrow\widehat{BDA}=\widehat{CDA}\) (**)

AD là cạnh chung. (***)

Vậy: từ (*) (**) (***) ta có \(\Delta ADB\) = \(\Delta ADC\) (g.c.g)

b) Vì: \(\Delta ADB\) = \(\Delta ADC\) (cm a)

\(\Rightarrow AB=AC\) (2 cạnh tương ứng)

c) Vì: \(\Delta ADB\) = \(\Delta ADC\) (cm a)

\(\Rightarrow DB=DC\) (2 cạnh tương ưng)

Mà D thuộc BC (gt)

=> D là trung điểm của BC. (****)

Lại có: AD là tia phân giác góc A (*****)

Từ (****) và (*****) suy ra AD là đường trung trực của BC

 

24 tháng 12 2023

a: Ta có: ΔABC cân tại A

mà AI là đường phân giác

nên I là trung điểm của BC và AI\(\perp\)BC

Xét ΔMBC có

MI là đường cao

MI là đường trung tuyến

Do đó: ΔMBC cân tại M

b: Ta có: AI\(\perp\)BC

I là trung điểm của BC

Do đó: AI là đường trung trực của BC

c: Ta có: DH\(\perp\)BC

AI\(\perp\)BC

Do đó: DH//AI

=>\(\widehat{BDH}=\widehat{BAI}\)(hai góc đồng vị)

mà \(\widehat{BAC}=2\cdot\widehat{BAI}\)(AI là phân giác của góc BAC)

nên \(\widehat{BAC}=2\cdot\widehat{BDH}\)

a: Xét ΔABD và ΔACD có

AB=AC

BD=CD

AD chung

Do đó: ΔABD=ΔACD

=>\(\widehat{BAD}=\widehat{CAD}\)

mà tia AD nằm giữa hai tia AB và AC

nên AD là phân giác của \(\widehat{BAC}\)

b: Xét ΔABM và ΔACM có

AB=AC

\(\widehat{BAM}=\widehat{CAM}\)

AM chung

Do đó: ΔABM=ΔACM

=>\(\widehat{ABM}=\widehat{ACM}\)

mà \(\widehat{ACM}=90^0\)

nên \(\widehat{ABM}=90^0\)

=>AB\(\perp\)BM

 

8 tháng 1

bạn cho mình hình vẽ được không ạ 

28 tháng 12 2018

21 tháng 12 2022

a: Xét ΔADE có

AG vừa là đường cao, vừa là phân giác

nên ΔADE cân tại A

=>AD=AE

b: góc BFD=góc DEA

góc BDF=góc BEA

Do đo: góc BFD=góc BDF

=>ΔBFD cân tại B

c: Xét ΔBMF và ΔCME có

góc BMF=góc CME
MB=MC

góc MBF=góc MCE
Do đó: ΔBMF=ΔCME

=>BF=CE=BD

31 tháng 5 2019

21 tháng 12 2022

a: Xét ΔADE có

AG vừa là đường cao, vừa là phân giác

nên ΔADE cân tại A

=>AD=AE

b: góc BFD=góc DEA

góc BDF=góc BEA

Do đo: góc BFD=góc BDF

=>ΔBFD cân tại B

c: Xét ΔBMF và ΔCME có

góc BMF=góc CME
MB=MC

góc MBF=góc MCE
Do đó: ΔBMF=ΔCME

=>BF=CE=BD

a: Xét ΔBAE vuông tại A và ΔBDE vuông tại D có

BE chung

góc ABE=góc DBE

=>ΔBAE=ΔBDE
b: BA=BD

EA=ED

=>BE là trung trực của AD
c: góc BAD+góc CAD=90 độ

góc HAD+góc BDA+90 độ

góc BAD=góc BDA

=>góc CAD=góc HAD

=>AD làphân giác của góc HAC

22 tháng 12 2021

a: Ta có: ΔABC cân tại A

mà AM là đường phân giác

nên M là trung điểm của BC

a: XétΔABC có \(\widehat{B}=\widehat{C}\)

nên ΔABC cân tại A

mà AD là tia phân giác

nên AD là đường cao

b: Xét ΔABE và ΔACF có 

AB=AC

\(\widehat{ABE}=\widehat{ACF}\)

BE=CF

Do đó: ΔABE=ΔACF

Suy ra: AE=AF