một số tự nhiên chia hết cho 3 lần tổng các chữ số cua nó chứng tỏ rằng số tự nhiên đó là bội của 27
<các bạn giải giúp mk bài toán này nhé>
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số đó là a (a thuộc N)
Tổng các chữ số của nó là n (n thuộc N)
Do a chia hết cho 3 lần tổng các chữ số của nó nên a = 3n.k (k thuộc N)
Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 9 => a - n = 3n.k - n chia hết cho 9 (1)
Mà 3n.k chia hết cho 3, từ (1) n chia hết cho 3
=> n = 3.x (x thuộc N)
=> a = 3n.k = 3.3.x.k = 9.x.k chia hết cho 9
Từ (1) => n chia hết cho 9
=> n = 9.y (y thuộc N)
=> a = 3n.k = 3.9.y.k = 27.y.k, là bội của 27 (đpcm)
a, gọi 3 số tự nhiên liên tiếp đó là : a; a + 1; a + 2
tổng của chúng là :
a + a + 1 + a + 2
= (a + a + a) + (1 + 2)
= 3a + 3
= 3(a + 1) ⋮ 3 (đpcm)
b, trong 2 số tự nhiên liên tiếp chắc chắn có 1 số chia hết cho 2
=> tích của chúng chia hết chô 2 (đpcm)
c, gọi số tự nhiên có 3 chữ số giống nhau là : aaa (a là chữ số)
aaa = a.111 = a.3.37 ⋮ 37 (đpcm)
d, ab + ba
= 10a + b + 10b + a
= (10a + a) + (10b + b)
= 11a + 11b
= 11(a + b) ⋮ 11 (đpcm)
d, ab + ba
= 10a + b + 10b + a
= a ( 10 + 1) + b(10+1)
= a.11 + b.11
= ( a + b ).11 \(⋮\)11
Vậy ab + ba \(⋮\)11
Hok tốt