Cho tam giác ABC nhọn, gọi D, E, F lần lượt là trung điểm của các cạnh AB, AC, BC. Vẽ đường cao AH. CMR:
a) DE là trung trực của AH
b) Tứ giác DEFH là hình thang cân.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: ΔAHB vuông tại H
mà HD là đường trung tuyến ứng với cạnh huyền AB
nên HD=AD=BD
Ta có: ΔAHC vuông tại H
mà HE là đường trung tuyến ứng với cạnh huyền AC
nên \(HE=AE=EC=\dfrac{AC}{2}\)(3)
Ta có: HD=AD
nên D nằm trên đường trung trực của AH(1)
Ta có: HE=AE
nên E nằm trên đường trung trực của AH(2)
Từ (1) và (2) suy ra DE là đường trung trực của AH
b) Xét ΔABC có
D là trung điểm của AB
E là trung điểm của AC
Do đó: DE là đường trung bình của ΔABC
Suy ra: DE//BC
hay DE//HF
Xét ΔABC có
D là trung điểm của AB
F là trung điểm của BC
Do đó: DF là đường trung bình của ΔABC
Suy ra: \(DF=\dfrac{AC}{2}\)(4)
Từ (3) và (4) suy ra DF=HE
Xét tứ giác DEFH có DE//HF(cmt)
nên DEFH là hình thang
mà DF=HE(cmt)
nên DEFH là hình thang cân
a: Ta có: ΔAHB vuông tại H
mà HD là đường trung tuyến ứng với cạnh huyền AB
nên HD=AD
hay D nằm trên đường trung trực của AH(1)
ta có: ΔAHC vuông tại H
mà HE là đường trung tuyến ứng với cạnh huyền AC
nên HE=AE
hay E nằm trên đường trung trực của AH(2)
Từ (1) và (2) suy ra DE là đường trung trực của AH
hay A và H đối xứng nhau qua ED
a) xet tam giac ABC ta co : D va E la trung diem AB va BC--> DE la duong trung binh -> DE//AC hay DE//KF
--> tu giac DKEF la hinh thang
cmtt EF la duong trung binh tam giac ABC --> EF//AB
Xet tam giac AKB vuong tai K co KD la duong trung tuyen ung voi canh huyen AB ( D la trung diem AB)
--> DK=1/2 AB ma DA=1/2 AB ( D la trung diem AB)
nen DK=DA--> tam giac DKA can tai D--> goc DAK= goc DKA
ta co : goc DAK= goc DKA (cmt)
goc DAK= goc EFC ( 2 goc dong vi va EF//AB)
goc EFC= goc FED ( 2 goc so le trong va DE//AC)
goc DKA=goc KDE ( 2 goc so le trong va DE/AC)
--> goc KDE= goc FED
xet hinh thang DKFE co : goc KDE= goc FED ( cmt)
--> hinh thang DKFE la hinh thang can
b)xet tam giac BKC vuong tai K co KE la duong trung tuyen ung voi canh huyen BC ( E la trung diem BC)
--> EK=1/2 BC ma BE=1/2 BC ( E la trung diem BC)
nen EK= BE
ta co
EK=EB (cmt)
DB=DK (cma)
--> DE la duong trung truc cua BK
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔBAC
Suy ra: MN//BC
Xét ΔABH có
M là trung điểm của AB
MI//BH
Do đó: I là trung điểm của AH
a) Gọi I là giao điểm của AH và ED
Xét tam giác ABC có:
E là trung điểm AC
D là trung điểm AB
Vậy: ED là đg tr/bình của tam giác ABC
=> ED // BC (t/chất đg tr/bình của tam giác)
Mà: AH vuông góc BC
=> AH vuông góc ED (từ vuông góc đến //) (1)
Xét tam giác ABH có:
D là tr/điểm AB
ID // BC (I thuộc ED; ED // BC)
Vậy: I là tr/điểm AH (2)
Từ (1) và (2)
=> A và H đối xứng nhau qua DE
b) Vẽ đường cao FQ (trong DEFH ý)
Có: IH vuông góc ED
FQ vuông góc ED
Vậy: IH // FQ (từ vuông góc đến //)
Có: DE // BC
Mà: HF thuộc BC
=> HF // DE
=> DEFH là h/thang
Xét tam giác EIH và tam giác DQF có:
IH = FQ (IH và FQ là đg cao của h/thang DEFH) (P/s: 2 đường cao hạ từ đỉnh xuống cạnh đối diện với điều kiện 2 cạnh đó phải // thì 2 đg cao đó sẽ = nhau)
Góc I = góc Q (=90 độ)
Góc EHI = góc QFD (2 góc đồng vị)
Vậy: tam giác EIH = tam giác DQF (g-c-g)
=> HE = FD (2 cạnh tương ứng)
c) Có: DEFH là hình thang (c/minh ở câu b)
Góc IEH = góc QDF (tam giác EIH = tam giác DQF)
Vậy: Hình thang DEFH là h/thang cân
a) Ta có: ΔAHB vuông tại H
mà HD là đường trung tuyến ứng với cạnh huyền AB
nên HD=AD=BD
Ta có: ΔAHC vuông tại H
mà HE là đường trung tuyến ứng với cạnh huyền AC
nên \(HE=AE=EC=\dfrac{AC}{2}\)(3)
Ta có: HD=AD
nên D nằm trên đường trung trực của AH(1)
Ta có: HE=AE
nên E nằm trên đường trung trực của AH(2)
Từ (1) và (2) suy ra DE là đường trung trực của AH
b) Xét ΔABC có
D là trung điểm của AB
E là trung điểm của AC
Do đó: DE là đường trung bình của ΔABC
Suy ra: DE//BC
hay DE//HF
Xét ΔABC có
D là trung điểm của AB
F là trung điểm của BC
Do đó: DF là đường trung bình của ΔABC
Suy ra: \(DF=\dfrac{AC}{2}\)(4)
Từ (3) và (4) suy ra DF=HE
Xét tứ giác DEFH có DE//HF(cmt)
nên DEFH là hình thang
mà DF=HE(cmt)
nên DEFH là hình thang cân