Chứng tỏ rằng với mọi số tự nhiên n thì tích (n + 4)(n + 5) chia hết cho 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) +Với n là số chẵn => n+3 lẻ và n+6 chẵn. Vì 1 số chẵn và 1 số lẻ nhân với nhau tạo thành số chẵn hay tích đó chia hết cho 2 ( đpcm)
+Với n là số lẻ => n+3 chẵn và n+6 lẻ ( tương tự câu trên)
2)Tg tự câu a
2,
+ n chẵn
=> n(n+5) chẵn
=> n(n+5) chia hết cho 2
+ n lẻ
Mà 5 lẻ
=> n+5 chẵn => chia hết cho 2
=> n(n+5) chia hết cho 2
KL: n(n+5) chia hết cho 2 vơi mọi n thuộc N
3,
A = n2+n+1 = n(n+1)+1
a,
+ Nếu n chẵn
=> n(n+1) chẵn
=> n(n+1) lẻ => ko chia hết cho 2
+ Nếu n lẻ
Mà 1 lẻ
=> n+1 chẵn
=> n(n+1) chẵn
=> n(n+1)+1 lẻ => ko chia hết cho 2
KL: A không chia hết cho 2 với mọi n thuộc N (Đpcm)
b, + Nếu n chia hết cho 5
=> n(n+1) chia hết cho 5
=> n(n+1)+1 chia 5 dư 1
+ Nếu n chia 5 dư 1
=> n+1 chia 5 dư 2
=> n(n+1) chia 5 dư 2
=> n(n+1)+1 chia 5 dư 3
+ Nếu n chia 5 dư 2
=> n+1 chia 5 dư 3
=> n(n+1) chia 5 dư 1
=> n(n+1)+1 chia 5 dư 2
+ Nếu n chia 5 dư 3
=> n+1 chia 5 dư 4
=> n(n+1) chia 5 dư 2
=> n(n+1)+1 chia 5 dư 3
+ Nếu n chia 5 dư 4
=> n+1 chia hết cho 5
=> n(n+1) chia hết cho 5
=> n(n+1)+1 chia 5 dư 1
KL: A không chia hết cho 5 với mọi n thuộc N (Đpcm)
-Với n=2k thì
2k(2k+5) chia hết cho 2
-Với n=2k+1 thì
(2k+1).(2k+1+5)
=>(2k+1).2.(k+3) nên chia hết cho 2
Nếu n = 2k thì n + 5 = 2k + 5 chia hết cho 2
Nếu n = 2k + 1 thì n + 3 = 2k + 4 chia het cho 2
Vậy (n+3) . (n+5) chia hết cho 2
Chắc chắn đúng
Xét hai trường hợp:
Nếu n chẵn thì n+4 chia hết cho 2 =>(n+4)(n+5)chia hết cho 2
Nếu n lẻ thì n+5 chia hết cho 2 =>(n+4)(n+5)chia hết cho 2
Vậy với n \(\in\)N thì (n+4)(n+5)chia hết cho 2
tick nha
Với n bằng 2k suy ra n+4 bằng 2k+4 chia hết cho 2
Suy ra (n+4)(n+5) chia hết cho 2
Với n bằng 2k+1 suy ra n+5 bằng 2k+1+5 bằng 2k+6 chia hết cho 2
Suy ra (n+4)(n+5) chia hết cho 2
Vậy với mọi STN n thì (n+4)(n+5) chia hết cho 2.
Nếu n là số lẻ thì (n+5) là số chẵn => (n+4)(n+5) chia hết cho 2 (ĐPCM)
Nếu n là số chẵn thì (n+4) là số chẵn => (n+4)(n+5) chia hết cho 2 (ĐPCM)
Ta xét 2 trường hợp : n chẵn và lẻ :
Nếu : \(n=2k\left(k\in N\right)\) , ta có :
\(n+4=2k+4\left(k\in N\right)=2k+2.2=2\left(k+2\right)⋮2\) (1)
Nếu :\(n=2k+1\) , ta có :
\(n+5=2k+1+5\left(k\in N\right)=2k+6=2k+2.3=2\left(k+3\right)⋮2\) (2)
Từ (1) và (2) \(\Rightarrow\left(n+4\right).\left(n+5\right)⋮2\)
Vậy : ( n + 4 ) . ( n + 5 ) chia hết cho 2 với mọi \(n\in N\)
chẳng phải n+4 và n+5 là 2 số tự nhiên liên tiếp với mọi số tự nhien n à, mà 2 số tự nhiên liên tiếp sẽ có 1 số chãn và 1 số lẻ, mà số chẵn luôn chia hết cho 2, nên => ĐPCM, đơn giản mà, xét các trường hợp làm j cho tốn hơi