Cho hình vuông ABCD và các điểm E,F tren AD,AB sao cho AE+BF=CD. Đường thẳng đi qua A vuông góc với BÊ tại K
a) chứng minh tứ giác BCKF là hình chữ nhật
b) tam giác CHF vuông tại H
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AKCI có
AK//CI
AI//CK
Do đó: AKCI là hình bình hành
a) Xét tam giác ACD có: AF=FC (gt) ; DK=KC (gt)
=> FK là đường trung bình của tam giác ACD
=> FK//AD
=> ADKF là hình thang
Chứng minh tương tự t cũng có: ME là đường trung bình của tam giác ABD
=> ME // AD mà FK//AD (cmt)
=> ME//FK (1)
Chứng minh tương tự ta cũng có:
MF là đường trung bình tam giác ABC , EK là đường trung bình tam giác DBC
=> MF//BC ; EK // BC
=> MF//EK (2)
Từ (1) và (2) ta có: EMFK là hình bình hành
a: Xét tứ giác ADEF ccó
gócc ADE=góc AFE=góc FAD=90 độ
nên ADEF là hình chữ nhật
b: Xét tứ giác AECK có
Dlà trung điểm chung của AC và EK
EA=EC
Do đó: AECK là hình thoi
c: ΔEMA vuông tại M
mà MO là trung tuyến
nên MO=EA/2=DF/2
Xét ΔMDF có
MO là trung tuyến
MO=DF/2
Do đó: ΔMDF vuông tại M
a: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
Do đó: AEHF là hình chữ nhật