Cho hình thang cân ABCD có AB//CD.Tính độ cao AH biết AB=6cm,CD=10cm.
và cạnh bên AD là (căn 60) cm
KQ ghi kèm đơn vị ( làm tròn tới số TP thứ nhất)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AB=CD-6=16-6=10(cm)
\(AD=\dfrac{AB}{2}=5\left(cm\right)\)
Vì ABCD là hình thang cân
nên \(AD=BC=5\left(cm\right)\)
Chu vi hình thang cân ABCD là:
\(AB+AD+CD+BC=5+5+10+16=36\left(cm\right)\)
Diện tích hình thang cân ABCD là:
\(S_{ABCD}=\dfrac{1}{2}\cdot AH\cdot\left(AB+CD\right)\)
\(=\dfrac{1}{2}\cdot4\cdot\left(10+16\right)=2\cdot26=52\left(cm^2\right)\)
Cạnh AB dài:
16 - 6 = 10 (cm)
Cạnh AD dài:
10 : 2 = 5 (cm)
Chu vi hình thang cân ABCD:
16 + 10 + 5 + 5 = 36 (cm)
Diện tích hình thang:
(16 + 10) × 4 : 2 = 52 (cm²)
Kẻ đg cao BK
DC=DH+HC=36(cm)
Dễ thấy tg AHD bằng tg BKC(ch-gn)
Suy ra DH=KC=6(cm)
Suy ra HK=DC-DH-KC=24(cm)
Dễ thấy AHKB là hcn nên HK=AB=24(cm)
Mà IJ là đtb hình thang cân ABCD nên \(IJ=\dfrac{AB+CD}{2}=\dfrac{24+36}{2}=30\left(cm\right)\)
tia AB cắt DC tại E ta thấy
AC là phân giác của góc ^DAE (gt)
AC vuông DE (gt)
=> tgiác ADE cân (AC vừa đường cao, vừa là phân giác)
lại có góc D = 60o nên ADE là tgiác đều
=> C là trung điểm DE (AC đồng thời la trung tuyến)
mà BC // AD => BC là đường trung bình của tgiác ADE
Ta có:
AB = DC = AD/2 và BC = AD/2
gt: AB + BC + CD + AD = 20
=> AD/2 + AD/2 + AD/2 + AD = 20
=> (5/2)AD = 20
=> AD = 2.20 /5 = 8 cm
Câu 1:
Gọi mỗi đinh của tứ giác là A, B, C, D. Các góc ngoài tương ứng lần lượt là A1, B1, C1, D1
Ta có: A+ B+ C+ D+ A1+ B1+ C1+ D1= 720 độ
Ma A+ B+ C+ D= 360 độ nên A1+ B1+ C1+ D1= 720 - 360= 360 độ
a) Chứng minh
DADH = DBCK (ch-gnh)
Þ DH = CK
Vận dụng nhận xét hình thang ABKH (AB//KH) có AH//BK Þ AB = HK
b) Vậy D H = C D − A B 2
c) DH = 4cm, AH = 3cm; SABCD = 30cm2