(2x.5)-8.36.x=-6
Tìm x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(M=9x^2-6x+6=\left(9x^2-6x+1\right)+5=\left(3x-1\right)^2+5\ge5\)
\(minM=5\Leftrightarrow x=\dfrac{1}{3}\)
2) \(M=5-2x-x^2=-\left(x^2+2x+1\right)+6=-\left(x+1\right)^2+6\le6\)
\(maxM=6\Leftrightarrow x=-1\)
3) \(N=5+6x-9x^2=-\left(9x^2-6x+1\right)+6=-\left(3x-1\right)^2+6\le6\)
\(maxN=6\Leftrightarrow x=\dfrac{1}{3}\)
\(\left(x-5\right)^5=\left(x-5\right)^6\)
\(\Rightarrow\left(x-5\right)^6-\left(x-5\right)^5=0\)
\(\Rightarrow\left(x-5\right)^5.\left(x-5-1\right)=0\)
\(\Rightarrow\left(x-5\right)^5.\left(x-6\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-5\right)^5=0\\x-6=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x=6\end{matrix}\right.\)
Bài 4:
a: =>7/x-5=2
=>x-5=7/2
=>x=17/2
b: =>1-2x=-5
=>2x=6
=>x=3
c: =>2x-3=5 hoặc 2x-3=-5
=>2x=8 hoặc 2x=-2
=>x=-1 hoặc x=4
d: =>2(x+1)^2+17=21
=>2(x+1)^2=4
=>(x+1)^2=2
=>\(x+1=\pm\sqrt{2}\)
=>\(x=\pm\sqrt{2}-1\)
** Bổ sung điều kiện $x,y$ là các số nguyên.
$x+5y+xy=6$
$(x+xy)+5y=6$
$x(1+y)+5(y+1)=11$
$(y+1)(x+5)=11$
Vì $x,y$ nguyên nên $x+5, y+1$ cũng nguyên. Ta xét các TH sau:
TH1: $x+5=1, y+1=11\Rightarrow x=-4; y=10$
TH2: $x+5=11, y+1=1\Rightarrow x=6; y=0$
TH3: $x+5=-1; y+1=-11\Rightarrow x=-6; y=-12$
TH4: $x+5=-11; y+1=-1\Rightarrow x=-16; y=-2$
Để (d1) cắt (d2) tại một điểm trên trục tung thì
\(\left\{{}\begin{matrix}m-2\ne-2\\m^2+5m+6=6\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\ne0\\m^2+5m=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m\left(m+5\right)=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\ne0\\\left[{}\begin{matrix}m=0\\m+5=0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m+5=0\)
=>m=-5