K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Giúp mình với . ( giải chi tiết và cái hình luôn) Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H làgiao điểm của BM và CN.a) Tính số đo các góc BMC và BNC.b) Chứng minh AH vuông góc BC.c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho gócMAB = 60độ . Kẻ dây MN vuông góc với AB...
Đọc tiếp

Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.

3
9 tháng 10 2017

Hình học lớp 9

21 tháng 4 2017

Tự giải đi em

28 tháng 8 2021

\(1,\)Gọi I là tâm đường tròn đường kính BC thì I là trung điểm BC và \(MI=IN=BI=CI=\dfrac{1}{2}BC\) (bán kính cùng đường tròn)

\(\Rightarrow\Delta BNC\) vuông tại N và \(\Delta CMB\) vuông tại N

Vậy \(\widehat{BMC}=\widehat{BNC}=90\) độ

\(2,\)Ta có \(H=BM\cap CN\)

Mà BM, CN là đường cao tam giác ABC

Suy ra H là trực tâm

\(\Rightarrow AH\) là đường cao thứ 3

\(\Rightarrow AH\perp BC\)

\(3,\) Gọi giao điểm của tiếp tuyến tại N và AH là K, AH cắt BC tại E.

Ta có \(\widehat{KNH}+\widehat{INH}=90\)

Mà \(\widehat{INH}=\widehat{NCI}\left(NI=IC\right)\)

\(\Rightarrow\widehat{KNH}+\widehat{NCI}=90\)

Mà \(\widehat{NCI}+\widehat{CHE}=90\)

\(\Rightarrow\widehat{KNH}=\widehat{CHE}\)

Mà \(\widehat{CHE}=\widehat{NHK}\left(đđ\right)\)

\(\Rightarrow\widehat{KNH}=\widehat{NHK}\)

\(\Rightarrow\Delta NHK\) cân tại K\(\Rightarrow NK=KH\left(1\right)\)

Ta có \(\widehat{KNH}+\widehat{KNA}=90;\widehat{KHN}+\widehat{NAH}=90\)

\(\Rightarrow\widehat{ANK}=\widehat{NAK}\Rightarrow NK=AK\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow NK=KH=AK\)

\(\Rightarrow\)Đfcm

Tick plzzz, nghĩ nát óc đó

 

 

1: Xét (O) có 

\(\widehat{BNC}\) là góc nội tiếp chắn nửa đường tròn

nên \(\widehat{BNC}=90^0\)

Xét (O) có 

\(\widehat{BMC}\) là góc nội tiếp chắn nửa đường tròn

nên \(\widehat{BMC}=90^0\)

2: Xét ΔABC có 

BM là đường cao ứng với cạnh AC

CN là đường cao ứng với cạnh AB

BM cắt CN tại H

Do đó: H là trực tâm của ΔABC

Suy ra: AH\(\perp\)BC

góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

góc FHE=180-60=120 độ

=>1/2(sđ cung FE+sđ cung BC)=120 độ

=>sđ cung FE=60 độ

=>góc FOE=60 độ

góc IFO=góc IFH+góc OFH

=90 độ

=>góc IEO=90 độ

=>IFOE nội tiếp đường tròn đường kính OI

góc FOE=60 độ

=>góc IOE=30 độ

=>OE/OI=1/căn 3

=>OI=Rcăn 3

=>R1=Rcăn 3/2

a: Xét (O) có 

ΔBDC nội tiếp

BC là đường kính

Do đó: ΔBDC vuông tại D

Xét (O) có

ΔBEC nội tiếp

BC là đường kính

Do đó: ΔBEC vuông tại E

Xét ΔABC có 

BE là đường cao

CF là đường cao

BE cắt CF tại H

Do đó: AH⊥BC

hay AF⊥BC