Tam giác ABC vuông tại A . Kẻ đường cao AH . Gọi D , E là các hình chiếu của H trên AB , AC và M , N theo thứ tự là các trung điểm của các đoạn thẳng BH , CH
chứng minh AH=DE
chứng minh tứ giác MDEN là hình thang vuông
Gọi P là giao điểm của đườn thẳng DE với đườn cao AH và Q là trung điểm của đoạn thẳng MN . Chứng minh PQ vuông góc với DE
chứng minh P là trực tâm tam giác ABN
chứng minh diện tích tam giác ABC = 2 lần diện tích tứ giác MDEN
1. qua de roi dung dinh li hinh chu nhat.
2.vi tam gic BDH vuong tai D co DM la duong trung tuyen nen DM=MN=BH/2
=>goc MDH = goc MHD(1)
tam gic DHE vuong tai H co HP la duong trung tuyen nen HP =DP=DE/2
=>goc HDP =goc DHP(2)
TU (1)(2) ma goc MHD+goc DHP=90
=.goc MDH +goc HDP=90=goc MDP
Tuong tu cm duoc goc NED=90
=>MDEN la hinh thanh vuong
3.dung dinh ly duong trung binh cua hinh thang
4.de dang cm duoc PN la duong trung binh tam giacHAC
=>PN //AC=>PN vuông góc với AB mà AH vuông góc với BC vá cắt PN tại P=>P la truc tam cua tam giac ABN
5.Ta co DM=BH/2
EN=HC/2
=>DM+EN=BC/2 (1)
Ta có S MNED = (MD+EN).DE/2 (2)
S ABC=AH.BC/2 (3)
AH=DE(4)
Tu (1)(2)(3)(4)=>S MNED=SABC/2
ý 2 thiếu điều kiện // để chứng minh MDEN là hình thang .