tìm giá trị nhỏ nhất
M=\(\left|x-2012\right|\) + \(\left|x-2013\right|\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :\(\left(x-2011\right)^2\ge0\)
\(|y-2012|\ge0\)
\(\Rightarrow\left(x-2011\right)^2+|y-2012|+2013\ge2013\)
Để A đạt giá trị nhỏ nhất thì dấu " = " xảy ra khi :
\(A=2013\)
\(C=\dfrac{2014\left(2015^2+2016\right)-2016\left(2015^2-2014\right)}{2014\left(2013^2-2012\right)-2012\left(2013^2+2014\right)}\)
\(=\dfrac{2.2014.2016+2014.2015^2-2016.2015^2}{2014.2013^2-2012.2013^2-2.2012.2014}\)
\(=\dfrac{2.\left(2015+1\right)\left(2015-1\right)-2.2015^2}{2.2013^2-2.\left(2013+1\right)\left(2013-1\right)}\)
\(=\dfrac{2.\left(2015^2-1\right)-2.2015^2}{2.2013^2-2.\left(2013^2-1\right)}=\dfrac{-2}{2}=-1\)
Ta có :
\(\left(-x+y-3\right)^4\ge0\)
\(\left(x-2y\right)^2\ge0\)
\(\Rightarrow P=\left(-x+y-3\right)^4+\left(x-2y\right)^2+2012\ge2012\)
Dấu " = " xảy ra khi \(\left(-x+y-3\right)^4=0\)vs \(\left(x-2y\right)^2=0\)
nên : * \(-x+y-3=0\)và \(x-2y=0\)
\(\Rightarrow y-x=3\)vs \(x=2y\)
\(\Rightarrow x=y-3\)(1) vs \(x=2y\)(2)
Từ (1) vs (2), ta có : \(y-3=2y\)
\(\Rightarrow y=3\)
\(\Rightarrow x=y-3=3-3=0\)
\(\Rightarrow Min\) \(P=2012\) khi x=0 vs y=3.
Ta có: \(M=\left|x-2012\right|+\left|x-2013\right|\ge\left|x-2012\right|+\left|2013-x\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(M\ge\left|x-2012\right|+\left|2013-x\right|\ge\left|x-2012+2013-x\right|=\left|2013-2012\right|=1\)
Dấu " = " xảy ra khi: \(x-2012\ge0;2013-x\ge0\)
\(\Rightarrow x\ge2012;x\le2013\)
Vậy \(MIN_M=1\) khi \(2012\le x\le2013\)