Cho x, y t/m:
\(\left(x+\sqrt{x^2+2016}\right)\left(y+\sqrt{y^2+2016}\right)=2016\)
Tìm Min \(M=5x^4+9y^4-12x^2+4y^2+5\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tương tự như bài này nhé
https://diendantoanhoc.net/topic/121539-1cho-xsqrty21ysqrtx211-tinh-axsqrtx21ysqrty21/
có/x+y/ lớn hơn hoặc bằng
/x/+/y/ dấu bằng xảy ra <=>
xy lớn hơn hoặc bằng 0
mà xy=1 =>/x+y/=/x/+/y/ (1)
lại có /x/+/y/-2\(\sqrt{xy}\)\(=\left(\sqrt{x}-\sqrt{y}\right)^2\) lớn hơn hoặc bằng 0
=>/x/+/y/ lớn hơn hoặc bằng 2\(\sqrt{xy}\)=2 (2)
từ (1) và (2)
=>/x+y/ lớn hơn hoặc bằng 2
=> MIN /x+y/ =2
dấu bằng xảy ra
<=> /x+y/=2
hay /x/+/y/ \(=2\sqrt{xy}\)
=>\(\left(\sqrt{x}-\sqrt{y}\right)^2=0\)
=>\(\sqrt{x}=\sqrt{y}=>x=y\)
mà /x+y / =2
TH1 x+y=2=>x=y=1
thay vào M ta tính được M=\(\dfrac{3}{4}\)
TH2 x+y =-2 =>x=y=-1
thay vào M ta được
M=\(\dfrac{3}{4}\)
Ta có:
\(\left(x+\sqrt{x^2+2016}\right)\left(y+\sqrt{y^2+2016}\right)=2016\)
\(\Rightarrow\left(x+\sqrt{x^2+2016}\right)\left(\sqrt{x^2+2016}-x\right)=x^2+2016-x^2=2016\)
Mà: \(\left(x+\sqrt{x^2+2016}\right)\left(y+\sqrt{y^2+2016}\right)=2016\)
\(\Rightarrow\sqrt{x^2+2016}-x=\sqrt{y^2+2016}+y\)
\(\Rightarrow x+y=\sqrt{x^2+2016}-\sqrt{y^2+2016}\) (1)
Chứng minh tương tự ta có: \(\sqrt{y^2+2016}-y=\sqrt{x^2+2016}+x\)
\(\Rightarrow x+y=\sqrt{y^2+2016}-\sqrt{x^2+2016}\) (2)
Cộng (1) với (2) ta được:
\(2\left(x+y\right)=0\Leftrightarrow x+y=0\)
Bạn thêm điều kiện x,y,z lớn hơn 0 nhé :)
Từ giả thiết ta suy ra : \(a^2=b+4032\Rightarrow\left(x+y+z\right)^2=x^2+y^2+z^2+4032\)
\(\Rightarrow xy+yz+zx=2016\)thay vào :
\(x\sqrt{\frac{\left(2016+y^2\right)\left(2016+z^2\right)}{2016+x^2}}=x\sqrt{\frac{\left(y^2+xy+yz+zx\right)\left(z^2+xy+yz+zx\right)}{x^2+xy+yz+zx}}\)
\(=x\sqrt{\frac{\left(x+y\right)\left(y+z\right)\left(z+y\right)\left(z+x\right)}{\left(x+y\right)\left(x+z\right)}}=x\sqrt{\left(y+z\right)^2}=x\left|y+z\right|=xy+xz\)vì x,y,z > 0
Tương tự : \(y\sqrt{\frac{\left(2016+z^2\right)\left(2016+x^2\right)}{2016+y^2}}=xy+zy\)
\(z\sqrt{\frac{\left(2016+x^2\right)\left(2016+y^2\right)}{2016+z^2}}=zx+zy\)
Suy ra \(P=2\left(xy+yz+zx\right)=2.2016=4032\)
bạn trả lời từng câu cũng được mà :) làm được câu nào thì giúp mình nhé. Tks!