Cho a,b,c,d > 0 . Chứng minh rằng:
1 < a/a+b+c + b/b+c+d + c/c+d+a + d/d+a+b < 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = a/a+b+c + b/b+c+d + c/c+d+a + d/d+a+b
A > a/a+b+c+d + b/a+b+c+d + c/a+b+c+d + d+a+b+c+d
A > a+b+c+d/a+b+c+d = 1 (1)
Áp dụng a/b < 1 <=> a/b < a+m/b+m (a;b;m > 0) ta có:
A < a+d/a+b+c+d + a+b/a+b+c+d + b+c/a+b+c+d + c+d/a+b+c+d
A < 2.(a+b+c+d)/a+b+c+d
A < 2
Từ (1) và (2) => đpcm
\(\left(1-a\right)\left(1-b\right)\left(1-c\right)\left(1-d\right)\)
\(=abcd+bd+cd+ab\left(1-c\right)+ad\left(1-b\right)+ac\left(1-d\right)+bc\left(1-d\right)+\left(1-a-b-c-d\right)\)
\(>1-a-b-c-d\)
Câu 2:
Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7b^2k^2+3bk\cdot b}{11\cdot b^2k^2-8b^2}=\dfrac{7b^2k^2+3b^2k}{11b^2k^2-8b^2}=\dfrac{7k^2+3k}{11k^2-8}\)
\(\dfrac{7c^2+3cd}{11c^2-8d^2}=\dfrac{7\cdot d^2k^2+3\cdot dk\cdot d}{11\cdot d^2k^2-8d^2}=\dfrac{7k^2+3k}{11k^2-8}\)
Do đó: \(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)
mình giải câu 1 còn câu 2 từ từ mình suy nghĩ nhé bạn
Cho a/b=c/d suy ra ad=bc
ta có ad+ac=bc+ac
suy ra a/(a+b)=c/(c+d) nếu ko hiểu thì nhắn tin cho mình bước này nhé
=>đpcm
Nghỉ lâu, giờ vào bài :v
Ta có : a,b,c,d >0
\(\Rightarrow\dfrac{a}{a+b+c}>\dfrac{a}{a+b+c+d}\)
\(\dfrac{b}{b+c+d}>\dfrac{b}{a+b+c+d}\)
\(\dfrac{c}{c+d+a}>\dfrac{c}{c+d+a+b}\)
\(\dfrac{d}{d+a+b}>\dfrac{d}{d+a+b+c}\)
Cộng cả 4 vế , ta được :
\(\dfrac{a}{a+b+c}+\dfrac{b}{b+c+d}+\dfrac{c}{c+d+a}+\dfrac{d}{d+a+b}>\dfrac{a}{a+b+c+d}+\dfrac{b}{a+b+c+d}+\dfrac{c}{a+b+c+d}+\dfrac{d}{a+b+c+d}=\dfrac{a+b+c+d}{a+b+c+d}=1\)Vậy \(\dfrac{a}{a+b+c}+\dfrac{b}{b+c+d}+\dfrac{c}{c+d+a}+\dfrac{d}{d+a+b}>1\left(1\right)\)
Ta lại có : \(\dfrac{a}{a+b+c}< \dfrac{a}{a+c}\)
\(\dfrac{b}{b+c+d}< \dfrac{b}{b+d}\)
\(\dfrac{c}{c+d+a}< \dfrac{c}{c+a}\)
\(\dfrac{d}{d+a+b}< \dfrac{d}{d+b}\)
Cộng 4 vế , ta được :
\(\dfrac{a}{a+b+c}+\dfrac{b}{b+c+d}+\dfrac{c}{c+d+a}+\dfrac{d}{d+a+b}< \dfrac{a}{a+c}+\dfrac{b}{b+d}+\dfrac{c}{a+c}+\dfrac{d}{b+d}=\left(\dfrac{a}{a+c}+\dfrac{c}{a+c}\right)+\left(\dfrac{b}{b+d}+\dfrac{d}{b+d}\right)=\left(\dfrac{a+c}{a+c}\right)+\left(\dfrac{b+d}{b+d}\right)=1+1=2\)
Vậy \(\dfrac{a}{a+b+c}+\dfrac{b}{b+c+d}+\dfrac{c}{c+d+a}+\dfrac{d}{d+a+b}< 2\left(2\right)\)
Từ (1) và (2)=> đpcm
Bạn ơi đây là Tiếng Anh mà chứ đâu phải Toán